Math, asked by pihu6885, 1 year ago

The radius of a cylinder increases by 3/2 times but its height reduced by 60%,what is the percentage change in its volume

Answers

Answered by Jainsahab05
2
volume of cylinder = πr2h
old volume is πr2h
new volume will decrease by 0.1 %
Answered by wifilethbridge
1

Answer:

150%

Step-by-step explanation:

Radius = r

Height = h

Volume of cylinder = \pi r^2 h

The radius of a cylinder increases by 3/2 times

So, New Radius = r+\frac{3}{2}r

                           = \frac{5}{2}r

Its height reduced by 60%,

So, New Height = h-60\% h

                          = h-\frac{60}{100}h

                          = \frac{40}{100}h

So, New Volume =  \pi (\frac{5}{2}r)^2 \times \frac{40}{100}h

                          =  2.5\pi r^2h

Change in volume = 2.5\pi r^2h-\pi r^2 h

                               = 1.5\pi r^2h

The percentage change in its volume = \frac{Change}{Original}\times 100

                                                               = \frac{1.5\pi r^2h}{\pi r^2 h}\times 100

                                                               = 1.5\times 100

                                                               = 150\%

Hence the percentage change in its volume is 150%                    

Similar questions