Math, asked by mnbsddq, 1 month ago

The Radius of a cylinder is 14cm & the height is 10cm, find its curved surface

area, total surface area & volume.​

Answers

Answered by mohammedameen313
1

Answer:

CSA = 880cm^2

TSA = 2112cm^2

VOLUME = 6160cm^3

Step-by-step explanation:

hope you understand

Answered by Eutuxia
19

Before, finding the answer. Let's find out we can find the answer.

  • In this question, we are asked to find the Curved Surface Area, Total Surface and the Volume of Cylinder.
  • So first, let's find the Curved Surface Area. To find the Curved Surface Area, we must use the formula of :

\boxed{ \tt Curved \: Surface \: Area = 2 \pi rh}

  • Next, we must find the Total Surface Area. To find the Total Surface Area, we must use the formula of :

\boxed{ \tt Total \:  Surface \: Area = 2 \pi r(h+r)}

  • At last, to find the Volume, we must use the formula of :

\boxed{ \tt Volume \: of \: Cylinder = 2 \pi r^2h}

_____________________________

Given :

  • Radius = 14 cm
  • Height = 10 cm

To find :

  • Curved Surface Area
  • Total Surface Area
  • Volume

Solution :

Curved Surface Area = 2πrh

                                   { \tt  = 2 \times  \dfrac{22}{7} \times 14 \times 10 }

                                   { \tt  = 2 \times  \dfrac{22}{7} \times 140 }

                                   { \tt  =  \dfrac{22}{7} \times 280 }

                                   { \tt  =  \dfrac{6160}{7} }

                                   { \tt = 880 }

Therefore, the Curved Surface Area of Cylinder is 880 cm².

                                 

Total Surface Area = 2πr(h+r)

                               = { \tt 2 \times \dfrac{22}{7}  \times 14 \times ( 10 + 14 ) }

                               { \tt = { 2 \times \dfrac{22}{7}  \times 14 \times ( 24 ) }

                               { \tt = { 2 \times \dfrac{22}{7}  \times 336 }

                               { \tt =  \dfrac{22}{7} \times 672 }

                               { \tt =  \dfrac{14784}{7} }

                               {\tt = 2112}

Therefore, Total Surface Area of the Cylinder is 2112 cm².

Volume of Cylinder = 2πr²h

                                 = { \tt 2 \times \dfrac{22}{7}  \times 14^2 \times 10 }

                                 = { \tt 2 \times \dfrac{22}{7}  \times 196 \times 10 }

                                 = { \tt 2 \times \dfrac{22}{7}  \times 1960 }

                                 = { \tt  \dfrac{22}{7}  \times 3920 }

                                 = { \tt  \dfrac{86240}{7}  }

                                 { \tt = 12320}

Therefore, the Volume of the Cylinder is 12320 cm³.

Similar questions