Math, asked by hiyike7811, 4 months ago

The radius of a cylinder is 7cm, while its volume is 1.54L. What is the height of the cylinder. Take \pi = 22/7

Pls dont spam.
(・∀・)​

Answers

Answered by MrImpeccable
54

 {\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}} \\ \\

Given:

  • Volume of the cylinder = 1.54L
  • Radius of cylinder = 7cm

 \\

To Find:

  • Height of cylinder

 \\

Solution:

We know that,

1L = 1000  cm^3

1.54L = 1.54*1000 => 1540  cm^3

 \setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\sf{7}}\put(9,17.5){\sf{h}}\end{picture}

Volume of cylinder =  \pi*r^2*h

1540 =  \dfrac{22}{7}*7^2*h

1540 = 22*7*h

154*h = 1540

h = 10.

The height of the cylinder is 10cm.

 \\

Formula Used:

  • Volume of cylinder =  \pi*r^2*h

 \\

Learn More:

  • Volume of cylinder = πr²h
  • T.S.A of cylinder = 2πrh + 2πr²
  • Volume of cone = ⅓ πr²h
  • C.S.A of cone = πrl
  • T.S.A of cone = πrl + πr²
  • Volume of cuboid = l × b × h
  • C.S.A of cuboid = 2(l + b)h
  • T.S.A of cuboid = 2(lb + bh + lh)
  • C.S.A of cube = 4a²
  • T.S.A of cube = 6a²
  • Volume of cube = a³
  • Volume of sphere = (4/3)πr³
  • Surface area of sphere = 4πr²
  • Volume of hemisphere = ⅔ πr³
  • C.S.A of hemisphere = 2πr²
  • T.S.A of hemisphere = 3πr²
Answered by Anonymous
2

hello.

the height of the cylinder is 10cm

hope it helps!

Similar questions