Math, asked by mahakalim14, 2 months ago

The radius of a cylindrical tank is 14 m. And height 20 m. Is.Find the area of ​​curvature of the cylindrical tank.(ii) Find the total surface area of ​​a cylindrical tank.(iii) Find the volume of a cylindrical tank.​

Answers

Answered by kelly324141
0

Answer:

1760 first answer and

third is 12320 answer

I hope this is helpful for you

Step-by-step explanation:

in image

Attachments:
Answered by Eutuxia
4

Before, finding the answer. Let's find out how we can find the answer.

  • In this question, we are asked to find the Area, Total Surface Area, and Volume of the Cylindrical tank.
  • So, to find the Area, we must use the formula :

\boxed{ \sf Curved \: Surface \: Area = 2 \pi r h}

  • Next, to find the Total Surface Area of the Cylindrical Tank, we must use the formula :

\boxed{ \sf Total \: Surface \: Area = 2 \pi r ( r + h)}

  • At last, to find the Volume of the Cylindrical Tank, we must use the formula :

\boxed{ \sf Volume \: of \: Cylindrical \: Tank =  \pi r^2 h}

____________________________

Given :

  • Radius = 14 m
  • Height = 20 m

To find :

  • Area
  • Total Surface Area
  • Volume

Solution :

Area of Cylindrical Tank = Curved Surface Area

                                        = 2πrh

                                        \sf = 2 \times  \dfrac{22}{7} \times 14 \times 20

                                        \sf = 2 \times  \dfrac{22}{7} \times 280

                                        \sf = \dfrac{22}{7} \times 560

                                        \sf = \dfrac{12320}{7}

                                        \sf = 1760

Therefore, the Area of the Cylindrical Tank is 1760 cm².

Total Surface Area = 2πr (r + h)

                               \sf = 2 \times \dfrac{22}{7} \times  14 \times  (14+ 20)

                               \sf = 2 \times \dfrac{22}{7} \times  14 \times  (34)

                               \sf = 2 \times \dfrac{22}{7} \times 476

                               \sf =  \dfrac{22}{7} \times 952

                               \sf =  \dfrac{20944}{7}

                               \sf = 2992

Therefore, the Total Surface area of the Cylindrical Tank is 2992 cm².

Volume of Cylindrical Tank = πr²h

                                             \sf = \dfrac{22}{7}  \times 14^2 \times 20

                                             \sf = \dfrac{22}{7}  \times 196 \times 20

                                             \sf = \dfrac{22}{7}  \times 3920

                                             \sf = \dfrac{86240}{7}

                                             \sf = 12320

Therefore, the Volume of the Cylindrical Tank is 12320 cm³.

Similar questions