Math, asked by mahakalim14, 2 months ago

The radius of a cylindrical tank is 14 m. And height 20 m. Is.Find the area of ​​curvature of the cylindrical tank.(ii) Find the total surface area of ​​a cylindrical tank.(iii) Find the volume of a cylindrical tank.​

Answers

Answered by SachinGupta01
9

 \bf \underline{Given} :

 \sf \implies Radius  \: of \:  cylindrical \:  tank = 14 \:  metre

 \sf \implies Height \:  of \:  cylindrical \:  tank = 20 \:  metre

 \bf \underline{To \:  find} :

 \sf \implies Area  \: of \:  curvature \:  of  \: cylindrical \:  tank.

 \sf \implies Total  \: surface \:  area  \: of \:  cylindrical  \: tank.

 \sf \implies Volume  \: of \:  cylindrical \:  tank.

 \bf\underline{ \underline{Solution} }

 \sf (i). \:  Area  \: of  \: curvature = Curved  \: Surface \:  area = 2 \pi r h

 \sf  \implies Curved  \: Surface \:  area = 2 \pi r h

 \sf  \implies 2  \times  \dfrac{22}{7}  \times  14 \times  20

 \sf  \implies 2  \times  \dfrac{22}{7}  \times  280

 \sf  \implies  \dfrac{44}{7}  \times  280

 \sf  \implies  44 \times 40

 \sf  \implies  1760 \: m^{2}

 \boxed{\pink{  \sf Hence, area  \: of \:  curvature = 1760 \:  m^{2}}}

_________________________________

 \sf (ii).\:  Total  \: surface \:  area  \: of \:  cylinder = 2 \pi r(h + r)

 \sf  \implies 2  \times  \dfrac{22}{7}  \times\:  14 \times (20 + 14)

 \sf  \implies 2  \times  22  \times\:  2 \times (20 + 14)

 \sf  \implies 2  \times  22  \times\:  2 \times34

 \sf  \implies 2992 \: m^{2}

 \boxed{\pink{  \sf Hence, t otal  \: surface \:  area  \: of \:  cylinder  = 2992 \:  m^{2}}}

_________________________________

 \sf  (iii).  \: Volume  \: of \:  cylindrical \:  tank =  \pi (r)^{2} h

 \sf  \implies \dfrac{22}{7}  \times\:  14 ^{2}  \times 20

 \sf  \implies \dfrac{22}{7}  \times\:  14 \times 14 \times  20

 \sf  \implies \dfrac{22}{7}  \times\:  3920

 \sf  \implies 22 \times 560

 \sf  \implies 12320 \: m^{3}

 \boxed{\pink{  \sf Hence, volume  \: of \:  cylindrical \:  tank = 12320 \:  m^{3}}}

_________________________________

 \bf \underline{Abbreviations} :

 \sf  \implies l=Length

 \sf  \implies h=Height

 \sf  \implies \pi=\dfrac{22}{7}

 \sf  \implies r=Radius

Similar questions