Math, asked by sanouwarsyed, 7 months ago

the radius of a cylindrical tank is doubled,while the lateral surface area remains unchanged.The height will be​

Answers

Answered by Anonymous
15

Answer :

➥ The Height of a cylindrical tank = h/2 i.e, the height will be halved.

Given :

➤ Lateral surface area of both the cylinder are equal.

To Find :

➤ Height will be ?

Solution :

Let ,

The radius of a cylinder be "r" and the height of a cylinder be "h".

Lateral surface area = 2πrh

When radius is doubled then radius = 2r

So ,

Lateral surface area of a cylinder = 2π2rh'

Lateral surface area of a cylinder = New lateral surface area of a cylinder.

It is given that lateral surface area of both the cylinder are equal.

 \tt{: \implies  \cancel{2} \cancel{\pi} 2 \cancel{r}h' =  \cancel{2} \cancel{\pi}  \cancel{r}h}

 \tt{: \implies 2h' = h}

 \bf{: \implies \underline{\:\:\underline{\purple{\:\:h' =  \dfrac{h}{2}\:\: }}\:\:}}

Hence, the height will be halved.

Answered by itzmedoraemon
12

solution:

 \longrightarrow\underline{\underline{\red{\sf{ \: h =  \frac{1}{2} (half) }}}} \sf

\tt {\pink{Given}}\begin{cases} \sf{\green{radius = h}}\\ \sf{\blue{radius \: when \: doubled = 2h}}\\ \sf{\orange{lateral \: surface \: area=2πrh}}\\ \sf{\red{height=?}}\end{cases}

_________________________

so,

 \sf \: lateral \: surface \: area \: of \: cylinder = 2π2rh

 \sf \: lateral \: surface \: area \: of \: new \: cylinder = 2πrh

 \sf \: given = lateral \: surface \: area \: of \: \: both  \\ \sf  cylinders \: is \: equal

therefore,

 \sf \longrightarrow2π2rh = 2πrh

 \sf \longrightarrow2h = h(as \: 2 , π \: and \: r \: </u><u>are</u><u> \: cancelled)

 \sf \longrightarrow \:  h =  \frac{h}{2}

∴\underline{\underline{\red{\sf{h =  \frac{h}{2} }}}}

Similar questions