Math, asked by shizuka53, 3 months ago

The radius of a hemisphere is 4 em, then curved surface of hemisphere will be ​

Answers

Answered by Ashleshaapohekar24
1

Answer:

.

Step-by-step explanation:

CSA of hemisphere = 2 π r 2 (r square)

= 2 × 22/7 × 4 × 4

= 100.57

Answered by Anonymous
4

Correct Question-:

  • The radius of a hemisphere is 4 cm, then curved surface of hemisphere will be _____________ .

AnswEr-:

  • \underline{\boxed{\star{\sf{\blue{ Curved \:Surface\:Area\:of\:Hemisphere\:=\:100.48cm^{2}[Approx]}}}}}

EXPLANATION-:

  • \underline{\sf{\large {Given -:}}}
  • The radius of Hemisphere is 4 cm .

  • \underline{\sf{\large {To\:Find -:}}}
  • The Curved Surface Area or CSA of Hemisphere.

\dag{\sf{\large {Solution -:}}}

  • \underline{\boxed{\star{\sf{\blue{ Curved \:Surface\:Area\:of\:Hemisphere\:=\:2\times \pi \times Radius^{2}}}}}}

  • \underline{\sf{\large {Here -:}}}
  • The radius of Hemisphere is 4 cm .
  • \sf{\large {\pi \: = \dfrac{22}{7}}}

\dag{\sf{\large {Now -:}}}

  • \implies {\large{\sf{2 \times \dfrac{22}{7} \times (4)^{2}}}}

  • \implies {\large{\sf{2 \times \dfrac{22}{7} \times 16}}}

  • \implies {\large{\sf{ \dfrac{2\times22}{7} \times 16}}}

  • \implies {\large{\sf{ \dfrac{44}{7} \times 16}}}

  • \implies {\large{\sf{ 6.28 \times 16}}}

  • \implies {\large{\sf{ 100.48cm^{2}[Approx]}}}

Hence,

  • \underline{\boxed{\star{\sf{\blue{ Curved \:Surface\:Area\:of\:Hemisphere\:=\:100.48cm^{2}[Approx]}}}}}

___________________________________________

Similar questions