Math, asked by kunzangdolma510, 10 months ago

the radius of a hemisphere is increased by 50%.find the % increase in its volume​

Answers

Answered by simrankaur33085
0

Answer:

237.5%.

Step-by-step explanation:

Let the radius be x

Volume of sphere = \frac{4}{3} \pi r ^3

3

4

πr

3

Where r is the radius

So, radius of given sphere = \frac{4}{3} \pi x^3

3

4

πx

3

Now radius of a sphere is increased 50%

So, New radius = \frac{50}{100}x+x =\frac{150x}{100}

100

50

x+x=

100

150x

So, New Volume = \frac{4}{3} \pi (\frac{150x}{100})^3

3

4

π(

100

150x

)

3

= \frac{4}{3} \pi (\frac{3x}{2})^3

3

4

π(

2

3x

)

3

= \frac{9}{2} \pi x^3

2

9

πx

3

Change in volume = New volume - Original volume

= \frac{9}{2} \pi x^3-\frac{4}{3} \pi x ^3

2

9

πx

3

3

4

πx

3

= \frac{19}{6} \pi x^3

6

19

πx

3

So, Increase in volume in percent =\frac{\text{Change in volume}}{\text{original volume}} \times 100

original volume

Change in volume

×100

=\frac{frac{19}{6} \pi x^3}{\frac{4}{3} \pi x ^3} \times 100

3

4

πx

3

frac196πx

3

×100

=237.5\%237.5%

Hence increase volume in percent is 237.5%.

Similar questions