Math, asked by pahadiqueens, 3 months ago

The radius of a right circular cylinder is 5cm and it's height is 9cm. find the curved surface area and total surface area of cylinder​

Answers

Answered by Anonymous
4

Answer:

Step-by-step explanation:

Radius of cylinder (r)=7cm

Height of cylinder (h)=15cm

Curved Surface Area =2πrh

=2×(22/7)×7×15

=660cm^2

 

Total Surface Area =2πr(h+r)

=2×(22/7)×7(15+7)

=2×22×22

=968cm^2

Answered by EliteZeal
71

\underline{\underline{\huge{\gray{\tt{\textbf Answer :-}}}}}

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Given :-}}}}

 \:\:

  • Radius of a right circular cylinder is 5cm

  • Height of the right circular cylinder is 9cm

 \:\:

\sf\large\bold{\orange{\underline{\blue{ To \: Find :-}}}}

 \:\:

  • Curved surface area

  • Total surface area

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Solution :-}}}}

 \:\:

 \underline{\bold{\texttt{Curved surface area of cylinder :}}}

 \:\:

➜ 2πrh ⚊⚊⚊⚊ ⓵

 \:\:

Where ,

 \:\:

  • r = Radius

  • h = Height

 \:\:

 \underline{\bold{\texttt{Curved surface area of the given cylinder :}}}

 \:\:

  • r = 5

  • h = 9

 \:\:

Putting the above values in ⓵

 \:\:

➜ 2πrh

 \:\:

 \sf 2 \times \dfrac { 22 } { 7 } \times 5 \times 9

 \:\:

 \sf \dfrac { 1980 } { 7 }

 \:\:

➨ 282.85 sq. cm.

 \:\:

  • Hence the curved surface area of the given cylinder is 282.85 sq. cm.

 \:\:

 \underline{\bold{\texttt{Total surface area of cylinder :}}}

 \:\:

➜ 2πr(h + r) ⚊⚊⚊⚊ ⓶

 \:\:

Where ,

 \:\:

  • r = Radius

  • h = Height

 \:\:

 \underline{\bold{\texttt{Total surface area of cylinder :}}}

 \:\:

  • r = 5

  • h = 9

 \:\:

Putting the above values in ⓶

 \:\:

➜ 2πr(h + r)

 \:\:

 \sf 2 \times \dfrac { 22 } { 7 } \times 5 (9 + 5)

 \:\:

 \sf \dfrac { 44 } { 7 } \times 5(14)

 \:\:

 \sf \dfrac { 44 } { 7 } \times 70

 \:\:

➜ 44 × 10

 \:\:

➨ 440 sq. cm.

 \:\:

  • Hence the total surface area of the given cylinder is 440 sq. cm

 \:\:

Similar questions