Math, asked by neelmalhotra14, 2 days ago

the radius of a right circular cylinder is 5cm and it's height is 9 cm find csa and tsa​

Answers

Answered by TheAestheticBoy
35

Question :-

  • The Radius of Right Circular Cylinder is 5 cm and its Height is 9 cm . Then, find the Curved Surface Area and Total Surface Area .

Answer :-

  • Curved Surface Area is 282.85 cm²
  • Total Surface Area is 440 cm²

 \rule {215pt}{2pt}

Given :-

  • Radius of Cylinder = 5 cm
  • Height of Cylinder = 9 cm

To Find :-

  • C.S.A and T.S.A = ?

Solution :-

  • Here, Radius of Cylinder is given 5 cm . Height of Cylinder is 9 cm . And, we have to find the C.S.A and T.S.A .

Formula Required :-

  •  \sf{Curved \: Surface \: Area = 2 \pi rh} \\

  •  \sf{Total \: Surface \: Area = 2 \pi r \: (r + h)} \\

Where ,

  • R denotes to the Radius
  • H denotes to the Height

First, we will find the C.S.A :-

 \dag \:  \:  \sf{ Curved \: Surface \: Area \: = \: 2 \pi rh} \\

 \Longrightarrow \: \: \sf{Curved \: Surface \: Area \: = \: 2 \times \frac{22}{7} \times 5 \times 9 } \\

 \Longrightarrow \: \: \sf{Curved \: Surface \: Area \: = \: \frac{1980}{7} } \\

 \Longrightarrow \: \: \bf{Curved \: Surface \: Area \: = \: 282.85 \:  {cm}^{2} } \\

Now, let's find the T.S.A :-

 \dag \:  \:  \sf{ Total \: Surface \: Area \: = \: 2 \pi r \: (r + h)} \\

 \Longrightarrow \:  \:  \sf{Total \: Surface \: Area \: = \: 2 \times  \frac{22}{7} \times 5  \times  (5 + 9) } \\

 \Longrightarrow \:  \:  \sf{Total \: Surface \: Area \: = \: \frac{44}{7}  \times 5 \times (14)} \\

 \Longrightarrow \:  \:  \sf{Total \: Surface \: Area \:  =  \:  \frac{44}{7} \times 70 } \\

 \Longrightarrow \:  \:  \sf{Total \: Surface \: Area \:  =  \: 44 \times 10} \\

 \Longrightarrow \:  \:  \bf{Total \: Surface \: Area \:  =  \: 440 \:  {cm}^{2} } \\

Hence :-

  • Curved Surface Area = 282.85 cm²
  • Total Surface Area = 440 cm²

 \rule {215pt}{4pt}

Formula Used :-

 \bigstar \: \boxed {\bf{\pink{C.S.A} = 2 \times \pi \times R \times H}} \\

 \bigstar \: \boxed {\bf{\pink{T.S.A} = 2 \times \pi \times R \times (R + H)}} \\

Similar questions