Math, asked by nearvi5486, 1 year ago

The radius of a semicircle increases by 20%. What would be the change in its parimeter

Answers

Answered by nidaeamann
0

Answer:

20% perimeter will decrease

Step-by-step explanation:

formula to calculate perimeter of a semicircle is 1/2*(pi*d)+d

when we decrease the value of radius by 20 % the value of diameter will decrease by 20 % .

using formula for example diameter of semicircle is 1 so we put it in equation

1/2*(3.14*(1/2))+1/2 = 1.285

now decrease the diameter by 20 % it will be

1* 20/100=0.2

new diameter will be 1-0.2 = 0.8

so put it again in the equation

1/2(3.14*(0.8/2))+0.8/2=1.028

so not we will check the percentage again

(1.028/1.285) *100= 80%

so the behavior will be liner. if we change the radius it will change the perimeter with the same ratio

Answered by jeehelper
0

Answer:

The perimeter of the semicircle increases.

Step-by-step explanation:

The perimeter of semi circle is calculated by using the following formula: pi*r+d, r is the radius and d is the diameter. Suppose the radius is 10 m , then the perimeter is , pi*10 +20=51.41 m. Now after increasing the radius by 20 percent the new value of r is 1,2*10 =12 m. By putting 12 in place of 10 we get 61.69 m. Now subtract the initial perimeter value from the new one , we will get 61.69-51.41=10.28.

% increase= [(difference between the initial and final value of perimeter)/initial value] * 100)

= 10.28 *100/51.41 = 19,99 which is almost 20 percent.

Similar questions