Math, asked by vvarunkarthik45, 18 days ago

the radius of a sphere is 14 cm. if the radius is increased by 30% find by how many percentage​

Answers

Answered by kaursumeet693
3

Answer:

Radius = 14 cm

Radius = 14 cmVolume of sphere =

Radius = 14 cmVolume of sphere = 3

Radius = 14 cmVolume of sphere = 34

Radius = 14 cmVolume of sphere = 34

Radius = 14 cmVolume of sphere = 34 πr

Radius = 14 cmVolume of sphere = 34 πr 3

Radius = 14 cmVolume of sphere = 34 πr 3 =

Radius = 14 cmVolume of sphere = 34 πr 3 = 3

Radius = 14 cmVolume of sphere = 34 πr 3 = 34

Radius = 14 cmVolume of sphere = 34 πr 3 = 34

Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14)

Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3

Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3

Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%

Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%So, new radius = 14+50\% \times 14 =14+\frac{50}{100} \times 14 = 21 cm14+50%×14=14+

Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%So, new radius = 14+50\% \times 14 =14+\frac{50}{100} \times 14 = 21 cm14+50%×14=14+ 100

Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%So, new radius = 14+50\% \times 14 =14+\frac{50}{100} \times 14 = 21 cm14+50%×14=14+ 10050

Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%So, new radius = 14+50\% \times 14 =14+\frac{50}{100} \times 14 = 21 cm14+50%×14=14+ 10050

Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%So, new radius = 14+50\% \times 14 =14+\frac{50}{100} \times 14 = 21 cm14+50%×14=14+ 10050 ×14=21cm

Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%So, new radius = 14+50\% \times 14 =14+\frac{50}{100} \times 14 = 21 cm14+50%×14=14+ 10050 ×14=21cmNew Volume =

Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%So, new radius = 14+50\% \times 14 =14+\frac{50}{100} \times 14 = 21 cm14+50%×14=14+ 10050 ×14=21cmNew Volume = 3

Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%So, new radius = 14+50\% \times 14 =14+\frac{50}{100} \times 14 = 21 cm14+50%×14=14+ 10050 ×14=21cmNew Volume = 34

Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%So, new radius = 14+50\% \times 14 =14+\frac{50}{100} \times 14 = 21 cm14+50%×14=14+ 10050 ×14=21cmNew Volume = 34

Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%So, new radius = 14+50\% \times 14 =14+\frac{50}{100} \times 14 = 21 cm14+50%×14=14+ 10050 ×14=21cmNew Volume = 34 π(21)

Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%So, new radius = 14+50\% \times 14 =14+\frac{50}{100} \times 14 = 21 cm14+50%×14=14+ 10050 ×14=21cmNew Volume = 34 π(21) 3

Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%So, new radius = 14+50\% \times 14 =14+\frac{50}{100} \times 14 = 21 cm14+50%×14=14+ 10050 ×14=21cmNew Volume = 34 π(21) 3

Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%So, new radius = 14+50\% \times 14 =14+\frac{50}{100} \times 14 = 21 cm14+50%×14=14+ 10050 ×14=21cmNew Volume = 34 π(21) 3 Change in volume = \frac{\text{new volume - original volume }100

original volume

original volume new volume - original volume

original volume new volume - original volume

original volume new volume - original volume ×100

original volume new volume - original volume ×100Change in volume =

original volume new volume - original volume ×100Change in volume = 4

original volume new volume - original volume ×100Change in volume = 4

original volume new volume - original volume ×100Change in volume = 4 π(14)

original volume new volume - original volume ×100Change in volume = 4 π(14) 3

original volume new volume - original volume ×100Change in volume = 4 π(14) 3

original volume new volume - original volume ×100Change in volume = 4 π(14) 3 3

original volume new volume - original volume ×100Change in volume = 4 π(14) 3 34

original volume new volume - original volume ×100Change in volume = 4 π(14) 3 34

original volume new volume - original volume ×100Change in volume = 4 π(14) 3 34 π(21) 3 −

original volume new volume - original volume ×100Change in volume = 4 π(14) 3 34 π(21) 3 − 34 π(14) 3 ×10034π(14) 3 34π((21) 3 −(14) 3 ) × 100 (14) 3 (21) 3−(14) 3) ×100

(21) 3−(14) 3) ×100Change in volume = 237.5237.5

(21) 3−(14) 3) ×100Change in volume = 237.5237.5So, Change in volume is 237.5%

Answered by Anonymous
5

Given

  • The radius of a sphere is 14 cm. if the radius is increased by 30% find by how many percentage?

To Find

  • Percentage(%)?

Solution

of the sphere :

original radius = 14 cm volume = 4/3 pi (r)^3 = 4/3 x 22/7 x (14)^3 =11498.667

now

New radius = 14(1+50/100) = 14(150/100)

= 21 cm

New volume = 4/3 pi (r)^3 = 4/3 x 22/7 x (21)^3

= 38808

increase in volume = 38808 - 11498.667 = 27309.333

percentage increase

=increase volume/ original volume x 100 = 27309.333/11498.667 x 100 = 237.49999 %

Therefore

  • Percentage = 237.5 %.
Similar questions