the radius of a sphere is 14 cm. if the radius is increased by 30% find by how many percentage
Answers
Answer:
Radius = 14 cm
Radius = 14 cmVolume of sphere =
Radius = 14 cmVolume of sphere = 3
Radius = 14 cmVolume of sphere = 34
Radius = 14 cmVolume of sphere = 34
Radius = 14 cmVolume of sphere = 34 πr
Radius = 14 cmVolume of sphere = 34 πr 3
Radius = 14 cmVolume of sphere = 34 πr 3 =
Radius = 14 cmVolume of sphere = 34 πr 3 = 3
Radius = 14 cmVolume of sphere = 34 πr 3 = 34
Radius = 14 cmVolume of sphere = 34 πr 3 = 34
Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14)
Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3
Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3
Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%
Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%So, new radius = 14+50\% \times 14 =14+\frac{50}{100} \times 14 = 21 cm14+50%×14=14+
Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%So, new radius = 14+50\% \times 14 =14+\frac{50}{100} \times 14 = 21 cm14+50%×14=14+ 100
Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%So, new radius = 14+50\% \times 14 =14+\frac{50}{100} \times 14 = 21 cm14+50%×14=14+ 10050
Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%So, new radius = 14+50\% \times 14 =14+\frac{50}{100} \times 14 = 21 cm14+50%×14=14+ 10050
Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%So, new radius = 14+50\% \times 14 =14+\frac{50}{100} \times 14 = 21 cm14+50%×14=14+ 10050 ×14=21cm
Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%So, new radius = 14+50\% \times 14 =14+\frac{50}{100} \times 14 = 21 cm14+50%×14=14+ 10050 ×14=21cmNew Volume =
Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%So, new radius = 14+50\% \times 14 =14+\frac{50}{100} \times 14 = 21 cm14+50%×14=14+ 10050 ×14=21cmNew Volume = 3
Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%So, new radius = 14+50\% \times 14 =14+\frac{50}{100} \times 14 = 21 cm14+50%×14=14+ 10050 ×14=21cmNew Volume = 34
Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%So, new radius = 14+50\% \times 14 =14+\frac{50}{100} \times 14 = 21 cm14+50%×14=14+ 10050 ×14=21cmNew Volume = 34
Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%So, new radius = 14+50\% \times 14 =14+\frac{50}{100} \times 14 = 21 cm14+50%×14=14+ 10050 ×14=21cmNew Volume = 34 π(21)
Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%So, new radius = 14+50\% \times 14 =14+\frac{50}{100} \times 14 = 21 cm14+50%×14=14+ 10050 ×14=21cmNew Volume = 34 π(21) 3
Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%So, new radius = 14+50\% \times 14 =14+\frac{50}{100} \times 14 = 21 cm14+50%×14=14+ 10050 ×14=21cmNew Volume = 34 π(21) 3
Radius = 14 cmVolume of sphere = 34 πr 3 = 34 π(14) 3 The radius is increased by 50%So, new radius = 14+50\% \times 14 =14+\frac{50}{100} \times 14 = 21 cm14+50%×14=14+ 10050 ×14=21cmNew Volume = 34 π(21) 3 Change in volume = \frac{\text{new volume - original volume }100
original volume
original volume new volume - original volume
original volume new volume - original volume
original volume new volume - original volume ×100
original volume new volume - original volume ×100Change in volume =
original volume new volume - original volume ×100Change in volume = 4
original volume new volume - original volume ×100Change in volume = 4
original volume new volume - original volume ×100Change in volume = 4 π(14)
original volume new volume - original volume ×100Change in volume = 4 π(14) 3
original volume new volume - original volume ×100Change in volume = 4 π(14) 3
original volume new volume - original volume ×100Change in volume = 4 π(14) 3 3
original volume new volume - original volume ×100Change in volume = 4 π(14) 3 34
original volume new volume - original volume ×100Change in volume = 4 π(14) 3 34
original volume new volume - original volume ×100Change in volume = 4 π(14) 3 34 π(21) 3 −
original volume new volume - original volume ×100Change in volume = 4 π(14) 3 34 π(21) 3 − 34 π(14) 3 ×10034π(14) 3 34π((21) 3 −(14) 3 ) × 100 (14) 3 (21) 3−(14) 3) ×100
(21) 3−(14) 3) ×100Change in volume = 237.5237.5
(21) 3−(14) 3) ×100Change in volume = 237.5237.5So, Change in volume is 237.5%
Given
- The radius of a sphere is 14 cm. if the radius is increased by 30% find by how many percentage?
To Find
- Percentage(%)?
Solution
of the sphere :
original radius = 14 cm volume = 4/3 pi (r)^3 = 4/3 x 22/7 x (14)^3 =11498.667
now
New radius = 14(1+50/100) = 14(150/100)
= 21 cm
New volume = 4/3 pi (r)^3 = 4/3 x 22/7 x (21)^3
= 38808
increase in volume = 38808 - 11498.667 = 27309.333
percentage increase
=increase volume/ original volume x 100 = 27309.333/11498.667 x 100 = 237.49999 %
Therefore
- Percentage = 237.5 %.