Math, asked by inderjitthaman339, 4 months ago

The radius of a sphere is 9 cm. It is melted and drawn into a wire of diameter 2 mm. The
length of the wire in meters is
(a) 97.2
(b) 9,72
(c) 9720
(d) 972
ਇੱਕ ਗੋਲਾਕਾਰ ਦਾ ਅਰਧ-ਵਿਆਸ 9 cm ਹੈ । ਇਸ ਨੂੰ 2 mm ਵਿਆਸ ਦੀ ਇੱਕ ਤਾਰ ਦੇ ਰੂਪ ਵਿੱਚ
ਪਿਘਲਾਇਆ ਗਿਆ ਹੈ । ਮੀਟਰਾਂ ਵਿੱਚ ਤਾਰ ਦੀ ਲੰਬਾਈ ਹੈ
(a) 97.2
(b) 9.72
(c) 9720
(l 97​

Answers

Answered by Anonymous
104

To solve such problems, we need to remember some points

  • Melting, recasting and transforming, if these words are in any question, then it means that we have to find the volume.

  • Volume of sphere is equal to 4/3πr³

  • Volume of cylinder is equal to πr²h

\\

To find : Length of wire in meters

Given, The radius of a sphere is 9 cm. It is melted and drawn into a wire of diameter 2 mm.

Calculate the volume of sphere

 \implies \sf  \dfrac{4}{3} \pi r^3 \\  \\   \qquad{ \underline{ \pmb{ \sf{Put \: the \: value \: of \: radius}}}} \\  \\  \implies \sf  \dfrac{4}{3} \times \dfrac{22}{7}  \times (9)^3 \\  \\  \implies \sf \dfrac{4}{ \cancel 3} \times \pi \times { \cancel{9}} \: ^{3}\times 9 \times 9 \\   \\  \implies \sf  972\pi \: cm^3

  • Volume of a sphere is 972π cm³

\: ━━━━━━━━━━━━━━━━━━━━━━━━

It is given in question that a sphere is melted and drawn into a wire of diameter 2 mm.

Convert "mm" into cm

  • 1cm = 10mm

\implies\sf 2 \times \dfrac{1}{10}\\

\therefore{\pmb{\sf{Diameter\:of\:the\:wire=0.2cm}}}\\

If sphere is melted and drawn into a wire, then the volume of sphere is equal to volume of wire

 \bullet \:  \tt Volume_{(sphere)} = Volume_{(wire)} \\  \\ { \underline{ \pmb{ \sf{Put \: the \:  value \: of \: volume \: of \: sphere}}}}  \\  \\  \implies \sf 972\pi = \pi r^2h \\  \\   { \underline{ \pmb{ \sf{Cancel \: \pi \: and \: put \: the \: value \: of \: radius \: of \: the \: wire}}}} \\  \\  \implies \sf 972 =   \left(\dfrac{0.2}{2} \right)^2 \times h  \\  \\  \implies \sf 972 = (0.1)^2 \times \: h \\  \\  \implies \sf h  =  \dfrac{972}{0.01}cm \\  \\  { \underline{ \pmb{ \sf{Convert \: cm \: into \: m \: and \: 1m = 100cm}}}} \\  \\  \implies \sf h  = 972  \times { \cancel{100}} \times \dfrac{1}{ \cancel{100}}  = 972m

Final answer

  • Length of the wire = 972m
  • Correct option is (d)

\: ━━━━━━━━━━━━━━━━━━━━━━━━

Answered by sautik56
29

Volume of wire = Volume of sphere

=> πr²h = 4/3πr³

=> r²h = 4/3 r³ ×

=> (0.2/2)²×h = 4/3 × 729

=> (0.1)² × h = 4 × 243

=> 0.01 × h = 4 × 243

=> h = 4 × 243 × 100/100

=> 972 m

Similar questions