Math, asked by anushabhargava8290, 1 year ago

The radius of a sphere is increased by 10 % the surface area increase how

Answers

Answered by SK6731
26

Answer:

Step-by-step explanation:

In the pics......

Attachments:
Answered by Raghav1330
1

Given:

radius of the sphere is increased by 10%

To Find:

Increment in the surface area of the sphere

Solution:

Let the actual radius be r.

The surface area of the sphere = 4πr²

The increased surface area of the sphere = 10%  (given)

                                                               = 10% × r+ r

                                                               = \frac{10}{100} × r + r

                                                               = \frac{11r}{10}

Now, the surface area of the sphere = 4π(11r/10)²

                                                             = 4× 121r²/100

Let the increment be x.

         ⇒ x% of 4πr²+ 4πr²= 4π 121r²/100

         ⇒ x/100× 4πr²+ 4πr²= 4π 121r²/100

         ⇒ (x/100+1) = 121/100

         ⇒ 100x = 121

         ⇒ x = 121/100

         ⇒ x = 1.21%

Therefore, the increment in the surface area of the sphere = 1.21%

Similar questions