Physics, asked by shdhsjssj, 9 months ago

The radius of a sphere is measured as (2.1 +- 0.5) cm calculate its surface area with error limits.
I got the answer but then why are we multiplying 2 to #r/r please solve my doubt ​

Answers

Answered by LoverLoser
6

\huge{\underline{\tt{\red{Answer-}}}}

Radius = (2.1 \pm 0.5) cm

Surface \ area = 4 \pi r^2

                   =  4\times 3.14 \times (2.1)^2

                   = 55.4 cm^2

Now,

\dfrac{\Delta A}{A}= 2 \dfrac{\Delta r }{r}

\Delta A = A \times 2 \times \dfrac {\Delta r}{2.1}}

     = 5.54 \times 2 \times \dfrac{0.5}{2.1}

     =26.4 cm ^2

\therefore surface area = (55.4 \pm 26.4) \ cm^2

Answered by Anonymous
5

Solution:

Given:

\sf{a\pm\Delta a=(2.1\pm0.5) \ cm}

\sf{Here \ a=Radius \ of \ sphere,}

\sf{\Delta a=Error}

To find:

  1. Total surface area of sphere.
  2. Error limits.

Formula:

\sf{Limit \ error=Relative \ error}

\sf{(1) \ Relative \ error=\dfrac{\Delta a}{a}}

Calculation:

\boxed{\sf{Total \ surface \ area \ of \ sphere=4\pi\times \ r^{2}}}

\sf{\therefore{Total \ surface \ area \ of \ sphere=4\times\dfrac{22}{7}\times2.1^{2}}}

\sf{\therefore{Total \ surface \ area \ of \ sphere=55.44 \ cm^{2}}}

\sf{From \ formula \ (1)}

\sf{Limit \ error=\dfrac{\Delta a}{a}}

\sf{=2 \ \dfrac{0.5}{2.1}}

\sf{=2 \ \dfrac{1\times5}{2.1\times10}}

\sf{=0.4762}

\sf{=0.476 (approx)}

\sf\purple{\tt{\therefore{Total \ surface \ area \ of \ sphere}}}

\sf\purple{\tt{is \ 55.44 \ cm^{2} \ and \ it's \ limit \ error}}

\sf\purple{\tt{is \ 0.467 \ cm}}

Similar questions