Math, asked by Anonymous, 1 day ago

The Radius of a Spherical balloon increases from 7 cm to 14 cm as air is pumped inside it .Find the ratio of Surface Areas in both cases .​

Answers

Answered by karishmakasarlawar51
26

Answer:

1: 4

1: 4It is given that radius of a spherical balloon increases from 7 cm to 14 cm as air is being pumped into it. We have found that the ratio of the surface areas of the balloons in the two cases is 1: 4.

Step-by-step explanation:

hope it helps

mark as brainlist please

Answered by Anonymous
47

Given :

  • The Radius of a Spherical balloon increases from 7 cm to 14 cm .

 \\ \\

To Find :

  • Find the Ratio of Surface Areas

 \\ \qquad{\rule{200pt}{2pt}}

SolutioN :

 \maltese Formula Used :

  •  {\underline{\boxed{\pmb{\sf{ Surface \; Area {\small_{(Sphere)}} = 4 \pi {r}^{2} }}}}}

 \\ \\

 \maltese Calculating the Ratio :

 \begin{gathered} \qquad \; \; \dashrightarrow \; \; \sf { Ratio = \dfrac{Surface \; Area \; of \; Old \; Balloon}{Surface \; Area \; of \; New \; Balloon} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \; \dashrightarrow \; \; \sf { Ratio = \dfrac{4 \times \pi \times {r}^{2} }{4 \times \pi \times {r}^{2}}} \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \; \dashrightarrow \; \; \sf { Ratio = \dfrac{4 \times \pi \times {7}^{2} }{4 \times \pi \times {14}^{2}}} \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \; \dashrightarrow \; \; \sf { Ratio = \dfrac{ \cancel4 \times \pi \times {7}^{2} }{ \cancel4 \times \pi \times {14}^{2}}} \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \; \dashrightarrow \; \; \sf { Ratio = \dfrac{ \pi \times {7}^{2} }{ \pi \times {14}^{2}}} \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \; \dashrightarrow \; \; \sf { Ratio = \dfrac{ \cancel{\pi} \times {7}^{2} }{ \cancel{\pi} \times {14}^{2} }} \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \; \dashrightarrow \; \; \sf { Ratio = \dfrac{ {7}^{2} }{ {14}^{2} } } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \; \dashrightarrow \; \; \sf { Ratio = \dfrac{ 49 }{ 196 } } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \; \dashrightarrow \; \; \sf { Ratio = \cancel\dfrac{ 49 }{ 196 } } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \; \dashrightarrow \; \; \sf { Ratio = \dfrac{ 1 }{ 4 } } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \; \dashrightarrow \; \; {\underline{\boxed{\pmb{\sf{ Ratio = 1:4 }}}}} \; {\red{\pmb{\bigstar}}} \\ \\ \\ \end{gathered}

 \\ \\

 \therefore \; Ratio of Surface Areas is both cases is 1:4 .

 \\ \qquad{\rule{200pt}{2pt}}

Similar questions