Math, asked by ajinrb997, 8 months ago

The radius of a spherical iron ball is 15 cm . It is melted and recast in to conical bullets

of radius 3cm and height 5 cm. How many such cones can be obtained ?​

Answers

Answered by Ataraxia
6

SOLUTION :-

Let the number of conical bullets be x.

Volume of the spherical iron ball = \sf\dfrac{4}{3}\pi r^3

                                                       = \sf\dfrac{4}{3}\times \pi \times 15 \times 15 \times 15

                                                       = \sf 4\times \pi \times 5 \times 15 \times 15

                                                       = \sf 4500 \pi

Volume of one conical bullet = \sf\dfrac{1}{3}\pi r^2h

                                                = \sf\dfrac{1}{3}\times \pi \times 3 \times 3 \times 5

                                                = \sf\pi \times 3 \times 5

                                                = \sf 15\pi

According to the question,

Volume of the spherical iron ball = x × Volume of one conical bullet

\longrightarrow \sf 4500\pi = x\times 15\pi \\\\\longrightarrow x=\dfrac{4500\pi}{15\pi}\\\\\longrightarrow \bf x = 300

Number of conical bullets = 300

Similar questions