The radius of an air bubble is increasing at the rate of . At what rate is the volume of the bubble increasing when the radius is 1 ?
Answers
volume of the bubble increasing is increasing at rate of 2 × pie cm^3/s when radius = 1cm
Step-by-step explanation:
dr/dt = 1/2
r = radius
air bubble is spherical
volume v= (4/3) × pie × r^3
dv/dt = 4 × pie × r^2 (dr/dt)
r = 1 cm
dr/dt = 1/2
dv/dt = 4 × pie × 1^2 (1/2)
= 2 × pie cm^3/s
volume of the bubble increasing is increasing at rate of 2 × pie cm^3/s when radius = 1cm
learn more
A balloon rises straight up at 10 ft/s. An observer is 40 ft away from ...
https://brainly.in/question/3185935
Find the rate of change of volume of a cone w.r.t. its radius, when the ...
brainly.in/question/5376336
Answer:
volume of the bubble increasing is increasing at rate of 2 × pie cm^3/s when radius = 1cm
Step-by-step explanation:
dr/dt = 1/2
r = radius
air bubble is spherical
volume v= (4/3) × pie × r^3
dv/dt = 4 × pie × r^2 (dr/dt)
r = 1 cm
dr/dt = 1/2
dv/dt = 4 × pie × 1^2 (1/2)
= 2 × pie cm^3/s
volume of the bubble increasing is increasing at rate of 2 × pie cm^3/s when radius = 1cm