Math, asked by mdusmansheik8850, 7 months ago

The radius of base of a right circular cylinder is 3cm and height
is 7cm. Find its curved surface area (n=)​

Answers

Answered by ak6992440
3

Answer:

height= 7cm

radius=3cm

CSA of cylinder=2pirh

CSA= 2×22/7×3×7

CSA = 2×22×3=132cm sq

Answered by Anonymous
5

Answer:

  • Radius of base of right circular cylinder = 3 cm
  • Height of right circular cylinder = 7 cm

\underline{\boldsymbol{According\: to \:the\: Question\:now :}}

=>\sf CSA  \: of \:  right \:  circular  \: cylinder = 2 \pi r h \\  \\

=>\sf CSA  \: of \:  right \:  circular  \: cylinder = 2 \times   \dfrac{22}{7} \times 3   \times 7 \\  \\

=>\sf CSA  \: of \:  right \:  circular  \: cylinder = 2  \times 22 \times 3 \\  \\

=> \underline{ \boxed{\sf CSA  \: of \:  right \:  circular  \: cylinder = 132 \:  {cm}^{2}}}  \\  \\

\therefore\underline{\textsf{ Curved surface area of a right circular cylinder is \textbf{132 cm$^2$}}} \\

__________________...

\qquad \:  \: \bigstar \: \underline {\frak{Extra \: Brainly\: Knowledge : }} \\  \\

\boxed{\bigstar{\sf \ Cylinder :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Cylinder= \pi r^2 h \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Curved \ surface\ Area \ of \ cylinder= 2\pi r h\\ \\ \\ \sf {\textcircled{\footnotesize3}} Total \ surface \ Area \ of \ cylinder= 2\pi r (h+r)

\boxed{\bigstar{\sf \ Cone :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Cone= \dfrac{1}{3}\pi r^2 h \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Curved \ surface\ Area \ of \ Cone = \pi r l \\ \\ \\ \sf {\textcircled{\footnotesize3}} Total \ surface \ Area \ of \ Cone = \pi r (l+r) \\ \\ \\ \sf {\textcircled{\footnotesize4}} Slant \ Height \ of \ cone (l)= \sqrt{r^2+h^2}

\boxed{\bigstar{\sf \ Hemisphere :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Hemisphere= \dfrac{2}{3}\pi r^3 \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Curved \ surface\ Area \ of \ Hemisphere = 2 \pi r^2 \\ \\ \\ \sf {\textcircled{\footnotesize3}} Total \ surface \ Area \ of \ Hemisphere = 3 \pi r^2

\boxed{\bigstar{\sf \ Sphere :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Sphere= \dfrac{4}{3}\pi r^3 \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Surface\ Area \ of \ Sphere = 4 \pi r^2

Similar questions