Math, asked by raju9411898321, 8 months ago

The radius of bases of two cylinder are in the ratio 3.4 and height 4.3 find ratio of their volumes

Answers

Answered by TheProphet
5

S O L U T I O N :

\underline{\bf{Given\::}}

The radius of bases of two cylinder are in the ratio 3:4 & height also in ratio 4:3.

\underline{\bf{Explanation\::}}

As we Know that formula of the volume of cylinder;

\boxed{\bf{Volume = \pi r^{2}  h \:\:\: (cunic\:unit)}}

A/q

\longrightarrow\tt{\pi r^2 h : \pi r'^2 h' }

\longrightarrow\tt{\dfrac{\pi r^{2} h}{\pi r'^{2}h' } }

\longrightarrow\tt{\dfrac{\pi \times (3 )^{2}\times 4 }{\pi \times (4)^{2} \times 3 } }

\longrightarrow\tt{\dfrac{\cancel{\pi} \times (3 )^{2}\times 4 }{\cancel{\pi} \times (4)^{2} \times 3 } }

\longrightarrow\tt{\dfrac{ 9\times 4 }{ 16 \times 3 } }

\longrightarrow\tt{\dfrac{36 }{ 48 } }

\longrightarrow\tt{\cancel{\dfrac{36 }{ 48 } }}

\longrightarrow\tt{\cancel{\dfrac{9 }{ 12 } }}

\longrightarrow\tt{\dfrac{3}{ 4 } }

Thus,

The ratio of their volume will be 3:4 .

Similar questions