Math, asked by pramit34, 1 year ago

The radius of circle is 50 cm . If the radius is decreased by 50 % then how much its area will be decreased

Answers

Answered by sumit2037
17
hey mate here is your answer
Attachments:

pramit34: correct
sumit2037: co mean
pramit34: correct
sumit2037: hey siddhi u have done it right but u dont know the formula of area of circle
sumit2037: it will be πr sq.
sumit2037: yes but see your answer
sumit2037: u have mulplied the radius only once
Answered by DevendraLal
2

GIVEN,

the radius of circle= 50cm

TO FIND,

decrease in % of the area when the R is decreased by 50%.

SOLUTION,

given radius is= R

new radius will be= 50% of R

                             =\frac{50}{100}R

                             = \frac{1}{2} R

The initial area of the circle with radius R is = \pi R^{2}

The new area of the circle with radius \frac{1}{2} R is = \pi( \frac{1}{2} R)^{2}

                                                                         =\frac{1}{4} \pi R^{2}

difference between new and initial circle is= \pi R^{2}-\frac{1}{4} \pi R^{2}

                                                                      = \frac{4\pi R^{2}-\pi R^{2}  }{4}

                                                                      =\frac{3}{4}\pi R^{2}

hence the decrease in % of area = \frac{new area}{initial area} * 100

                                                      = \frac{\frac{3}{4}\pi R^{2}  }{\pi R^{2} }*100

                                                      =\frac{3}{4} *100

                                                      = 75%

HENCE WHEN THE RADIUS DECREASES BY 50% THE AREA OF THE CIRCLE DECREASES BY 75%.

Similar questions