Physics, asked by sktheheartbroker5143, 10 months ago

The radius of curvature of spherical surfaces of a convex lens are 15 cm. and 10 cm.
respectively. If Refractive Index of lens is 1.5. then find its focal length.​

Answers

Answered by TheVenomGirl
40

AnSwer:

Focal length of the lens is 100 cm.

━━━━━━━━━━━━━━━━

GiVen:

  • Refractive Index = 1.5
  • R1 = 15 cm
  • R2 = 10 cm

To Find:

  • We need to find the focal length of convex lens.

SoluTion:

According to the formula,

 \sf \longmapsto \:  \:  \dfrac{1}{f}  =  \bigg(\dfrac{n_{2}}{n_{1}}  - 1 \bigg) \bigg(\dfrac{1}{r_{1}} -  \dfrac{1}{r_{2}} \bigg)

\sf \longmapsto \:  \: \dfrac{1}{f}  = (1.5 - 1) \bigg( \dfrac{1}{15} -  \dfrac{1}{10} \bigg)

\sf \longmapsto \:  \: \dfrac{1}{f} = (0.5) \bigg(  \dfrac{15 - 10}{150}  \bigg)

\sf \longmapsto \:  \: \dfrac{1}{f}  =  (0.5) \bigg( \dfrac{5}{150} \bigg)

\sf \longmapsto \:  \: \dfrac{1}{f}  =  \dfrac{2.5}{150}

\sf \longmapsto \:  \: { \underline{ \boxed{ \bf{ \purple{{ \bold{f \:  = 100 \: cm}}}}}}} \: \bigstar

Therefore, focal length is 100 cm.

━━━━━━━━━━━━━━━━

Similar questions