Physics, asked by parameshwari71, 6 months ago

The radius of curvature of two faces of a bouble convex lens are 10cm, 15cm and its focal length is 12cm, Then determine the refractive index of the lens. ​

Answers

Answered by Anonymous
15

Given:

Radius of curvature of two faces of a double convex lens are:

 \rm R_1 = 10 \: cm

  \rm R_2 = -15 \: cm

Focal length of the lens (f) = 12 cm

To Find:

Refractive index of the lens  \rm (\mu)

Answer:

Lens Maker's Formula:

 \boxed{ \boxed{ \bf{ \dfrac{1}{f}  = ( \mu - 1) \bigg( \dfrac{1}{R_1} -  \dfrac{1}{R_2}  \bigg) }}}

By substituting values in the formula we get:

 \rm \implies \dfrac{1}{12}  = ( \mu - 1) \bigg( \dfrac{1}{10} -  \dfrac{1}{(-15)} \bigg) \\ \\  \rm \implies \dfrac{1}{12}  = ( \mu - 1) \bigg( \dfrac{1}{10} +  \dfrac{1}{15} \bigg) \\  \\ \rm \implies \dfrac{1}{12}  = ( \mu - 1) \bigg( \dfrac{3 + 2}{30} \bigg) \\  \\ \rm \implies \dfrac{1}{12}  = ( \mu - 1) \times  \dfrac{5}{30}  \\  \\ \rm \implies \dfrac{1}{12}  = ( \mu - 1) \times  \dfrac{1}{6}  \\  \\   \rm \implies  \mu - 1 =  \dfrac{6}{12}  \\  \\ \rm \implies  \mu - 1 =  \dfrac{1}{2}  \\  \\\rm \implies  \mu =  \dfrac{1}{2}  + 1 \\  \\ \rm \implies  \mu =  \dfrac{1 + 2}{2}  \\  \\ \rm \implies  \mu =  \dfrac{3}{2} \\  \\ \rm \implies  \mu = 1.5

 \therefore  \boxed{\mathfrak{Refractive \ index \ of \ the \ lens \ (\mu) = 1.5}}

Answered by ubekr
5

1/f = (μ - 1)(1/R1 - 1/R2)

1/12 = (μ - 1)(1/10 - 1/-15)

μ = 3/2

Similar questions