the radius of curveture at the origin of the curve is
Answers
Answered by
4
Step-by-step explanation:
The radius of curvature of a curve at a point M(x,y) is called the inverse of the curvature K of the curve at this point: R=1K. Hence for plane curves given by the explicit equation y=f(x), the radius of curvature at a point M(x,y) is given by the following expression: R=[1+(y′(x))2]32|y′′(x)|.
Similar questions