Physics, asked by BaboolMariner, 3 days ago

The radius of gyration of a solid disc wheel of uniform thickness is at r/sqrt2from the center, where ris the radius of the wheel. Calculate the change in kinetic energy, in kilo joules, in a solid disc flywheel of 1400 mm diameter and 1250Kg mass when its speed changes from 8 pie to 10 pie rad/sec.(Answer In KJ)

IMPORTANT QUESTION
Only answer if you know
Please Do not Spam​

Answers

Answered by ShivamKashyap08
14

Answer:

  • The Kinetic Energy is 54.02 KJ

Explanation:

Given, Radius of gyration (K) = r/√2

Diameter (d) = 1400mm = 1.4 m

Mass of solid disc (m) = 1250 Kg

Initial angular veloc. (ω₁) = 8π rad/sec

Final angular veloc. (ω₂) = 10π rad/sec

From the formula of we know that,

\longrightarrow\sf K.E. = \dfrac{1}{2}\;.\;I\;.\;\omega^{2}

Substituting the values,

\longrightarrow\sf K.E = \dfrac{1}{2}\times \Bigg(M\:K^{2}\Bigg)\times \bigg(\omega_{2}^{2}-\omega_{1}^{2}\bigg)\\\\\\\\\longrightarrow\sf K.E = \dfrac{1}{2}\times \Bigg(1250\times \bigg(\dfrac{r}{\sqrt{2}}\bigg)^{2}\Bigg)\times \bigg((10\pi)^{2}-(8\pi)^{2}\bigg)\\\\\\\\\longrightarrow\sf K.E = \dfrac{1}{2}\times \Bigg(1250\times \dfrac{r^{2}}{2}\Bigg)\times \bigg(100\;\pi^{2}-64\;\pi^{2}\bigg)

Diameter = 1.4 m so, radius is 0.7 m.

\longrightarrow\sf K.E = \dfrac{1}{2}\times \Bigg(625\times (0.7)^{2}\Bigg)\times \bigg(36\;\pi^{2}\bigg)\\\\\\\\\longrightarrow\sf K.E = \Bigg(625\times 0.49\Bigg)\times \bigg(18\;\pi^{2}\bigg)\\\\\\\\\longrightarrow\sf K.E = 306.25 \times 18\;\pi^{2}\\\\\\\\\longrightarrow\sf K.E = 54022.5 = 54.022 \times 10^{3}\\\\\\\\\longrightarrow\sf K.E = 54.02 \; KJ

\\

∴  The Kinetic Energy of solid disc is 54.02 KJ.

Answered by PopularANSWERER007
9

Question:-

The radius of gyration of a solid disc wheel of uniform thickness is at r/√2 from the center, where ris the radius of the wheel. Calculate the change in kinetic energy, in kilo joules, in a solid disc flywheel of 1400 mm diameter and 1250Kg mass when its speed changes from 8π to 10π rad/sec.(Answer In KJ)

To Find:-

  • changes in the kinetic energy.

Given:-

  • radius of gyration (k) = r/√2.
  • Diameter (d) = 1400mm.
  • Mass of solid disc (m) = 1250Kg.
  • Initial angular velocity (ω₁) = 8π rad/sec.
  • Final angular veloc. (ω₂) = 10π rad/sec.

Formula:-

From the Formula we know that,

\sf{=> K.E. = \frac{1}{2} .I .ω {}^{2} }

Solution:-

\sf{radius  \: of \:  gyration  =  \sqrt{ \frac{I}{A} } }

\sf{Area\: of \: disc \: = πr {}^{2} }

\sf{=>   \frac{r}{ \sqrt{2} }  =  \sqrt{ \frac{I}{\pi r {}^{2} } } }

\sf{  =  &gt; \frac{r {}^{2} }{2}  =  \frac{</p><p>I}{\pi r {}^{2} } }

\sf{ =  &gt; I =  \frac{\pi r {}^{4} }{2} }

\sf{\therefore Inertia \: of \: the \: disc \: is \:  =  \frac{\pi r {}^{4} }{2}  }.

\sf{kinetic  \: energy \:  of \:  a  \: disc  \: is  \: given \:  by} \\ \sf{ \frac{1}{2} }mr {}^{2} ω {}^{2}  +  \frac{1}{2} \:  I \: ω {}^{2}

\sf{=&gt; change \:  in  \: kinetic \:  energy  \: is}

\sf{=  \frac{1}{2} mr^2 (ω₂ {}^{2}  \: – \:  {\sf{{ω_{1}}}} {}^{2} )+  \frac{1}{2}   \: I } \: (ω₂ {}^{2}  -  {\sf{{ω_{1}}}} {}^{2}  )

= [ \frac{1}{2}     \times  1250 \times ( \frac{1400}{2 \times 1000} ) {}^{2} +  \\ \frac{1}{2}   \times\frac{\pi}{2} ( \frac{1400}{2 \times 1000} ) {}^{4} ]({\sf{{ω_{1}}}}{\sf{{ - ω_{2}}}})

 = (306.25 + 0.1886)((10\pi) {}^{2}   -  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  ((8\pi) {}^{2} )

\sf{108,880 \:  KJ(m/s) {}^{2} }

\sf{54440 \:Joules }

\sf{54.44 \: KJ \:  also \:  similarly \:  written  \: as  \:  } \\ \sf{ 54.02 KJ.}

Answer:-

The changes in kinetic energy is 54.02 KJ.

Similar questions