the radius of its base is 28 cm.
The height of a cone is 14 cm and the area of its base is 321 cm?. Find the volume.
Answers
Answer:
Height of the cone is 14cm.
Area of its base= 321cm²
Since,
We know that base of right circular cone is circular.So,
area of base=area of circle= πr²
Find radius:
\begin{gathered}\pi {r}^{2} = 321 {cm}^{2} \\ \\ = > \frac{22}{7} \times {r}^{2} = 321 \\ \\ = > {r}^{2} = \frac{321 \times 7}{22} \\ \\ = > {r}^{2} = 102.13 \\ \\ = > r = \sqrt{102} \\ = > r = 10.10cm\end{gathered}
πr
2
=321cm
2
=>
7
22
×r
2
=321
=>r
2
=
22
321×7
=>r
2
=102.13
=>r=
102
=>r=10.10cm
Radius= 10.10cm
Now,
Find volume:
We know that volume of cone=1/3πr²h:
\begin{gathered}= > \frac{1}{3} \times \pi \times 10.10 \times 10.10 \times 14 \\ \\ = > \frac{1}{3} \times \pi \times 1428.14 \\ \\ = > \frac{1}{3} \times \frac{22}{7} \times 1428.14 \\ \\ = > \frac{31419.08}{21} \\ \\ = > 1496.14 {cm}^{3}\end{gathered}
=>
3
1
×π×10.10×10.10×14
=>
3
1
×π×1428.14
=>
3
1
×
7
22
×1428.14
=>
21
31419.08
=>1496.14cm
3
So,
Volume of the right circular cone required= 1496.14cm³.