Math, asked by rajeshrwt3910, 10 months ago

The radius of largest and smallest circle passing through point root 3 root 2 and touching circle x square + y square + 2 root 2 y - 2 = 20 are r1 and r2 respectively find the difference between r1 and r2

Answers

Answered by r5134497
2

The difference of largest circle and smallest circle =2\sqrt{6}

Step-by-step explanation:

Since, both the circles pass through point A(\sqrt3, \sqrt2).

  • The equation of touching circle is given as;

                             x^2 + y^2 + 2\sqrt2 y - 2 = 20

  •  x^2 + y^2 + 2\sqrt2 y +2 - 2 = 20 + 2
  •  x^2 + (y + \sqrt2 )^2 - 2 = 22
  •  x^2 + (y + \sqrt2 )^2 = (2\sqrt6)^2

Thus, we have the coordinate of the center of touching circle as C (0,-\sqrt{2}) and radius (r) is 2\sqrt{6}.

we know that,

  • The radius of smallest circler_1 = \dfrac{AC-r}{2}
  • The radius of largest circler_2 = \dfrac{AC+r}{2}
  •  Difference of radii =r_2 - r_1

                              =\dfrac{AC+r}{2} - \dfrac{AC-r}{2}

                              = r

                              = 2\sqrt{6}

   

Similar questions