Math, asked by msivakrishna899, 6 months ago

The radius of sphere is
3.5cm: Find its surface
area and volume.

Answers

Answered by SarcasticL0ve
8

Given: Radius of sphere = 3.5 cm

Need to find: Surface Area and Volume of sphere.

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Total\;surface\;area_{\;(sphere)} = 4 \pi r^2}}}}\\ \\

:\implies\sf TSA_{\;(sphere)} = 4 \times \dfrac{22}{ \cancel{7}} \times \cancel{3.5} \times 3.5\\ \\

:\implies\sf TSA_{\;(sphere)} = 4 \times 22 \times 0.5 \times 3.5\\ \\

:\implies\sf TSA_{\;(sphere)} = 4 \times 22 \times 1.75\\ \\

:\implies{\underline{\boxed{\frak{\purple{TSA_{\;(sphere)} = 154\;cm^2}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Total\;surface\;area\;of\;sphere\;is\; \bf{154\;cm^2}.}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

\star\;{\boxed{\sf{\pink{Volume_{\;(sphere)} = \dfrac{4}{3} \pi r^3}}}}\\ \\

:\implies\sf Volume_{\;(sphere)} = \dfrac{4}{3} \times \dfrac{22}{7} \times (3.5)^3\\ \\

:\implies\sf Volume_{\;(sphere)} =  \dfrac{4}{3} \times \dfrac{22}{ \cancel{7}} \times \cancel{42.875}\\ \\

:\implies\sf Volume_{\;(sphere)} = \dfrac{4}{3} \times 22 \times 6.125\\ \\

:\implies\sf Volume_{\;(sphere)} = \dfrac{88}{3} \times 6.125\\ \\

:\implies{\underline{\boxed{\frak{\purple{Volume_{\;(sphere)} = 179.66\;cm^3}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Volume\;of\;sphere\;is\; \bf{179.66\;cm^3}.}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

\qquad\qquad\boxed{\underline{\underline{\bigstar \: \bf\:More\:to\:know\:\bigstar}}} \\  \\

  • Total surface area of hemisphere = 3πr²

  • Curved surface area of hemisphere = 2πr²

  • Volume of hemisphere = 4/3 πr³
Answered by BrainlyHero420
26

Answer:

Given :-

  • The radius of a sphere is 3.5 cm.

To Find :-

  • What is the surface area and volume.

Formula Used :-

To find surface area we know that,

\boxed{\bold{\large{T.S.A\: of\: Sphere\: =\: 4{\pi}{r}^{2}}}}

To find volume we know that,

\boxed{\bold{\large{Volume\: of\: Sphere\: =\: \dfrac{4}{3}{\pi}{r}^{3}}}}

Solution :-

Radius of a sphere is 3.5 cm.

First, we have to find the T.S.A of sphere,

T.S.A of sphere = 4\: \times \dfrac{22}{7} \times {(3.5)}^{2}

T.S.A of sphere = 4\: \times \dfrac{22}{7} \times 3.5 \times 3.5

T.S.A of sphere = 4\: \times \dfrac{22}{7} \times 12.25

T.S.A of sphere = \dfrac{1078}{7}

T.S.A of sphere = \sf\dfrac{\cancel{1078}}{\cancel{7}}

T.S.A of sphere = 154 cm²

Hence, the total surface area of sphere is 154 cm² .

Now, we have to find the volume of sphere,

Volume of sphere = \dfrac{4}{3} \times \dfrac{22}{7} \times {(3.5)}^{3}

Volume of sphere = \dfrac{4}{3} \times \dfrac{22}{7} \times 3.5 \times 3.5 \times 3.5

Volume of sphere = \dfrac{4}{3} \times \dfrac{22}{7} \times 42.875

Volume of sphere = \dfrac{3773}{21}

Volume of sphere = \sf\dfrac{\cancel{3773}}{\cancel{21}}

Volume of sphere = 179.67 cm³

Hence, the volume of sphere is 179.67 cm³ .

Similar questions