Math, asked by farooqsalmani1ozut6g, 1 year ago

the radius of the base and the height of a cylinder are in the ratio 2 ratio 3 if its volume is 1617 cm cube find the total surface area of the cylinder

Answers

Answered by siddhartharao77
106
Given ratio = 2:3 and volume = 1617 cm^3.

Let the radius and height of the cylinder be 2x and 3x.   ---- (1)

Given volume of cylinder = 1617 cm^3

               pir^2h = 1617 cm^3

               (22/7) * (2x)^2 * 3x = 1617

                22/7 * 4x^2 * 3x = 1617

                x = 7/2.

Substitute x = 7/x in (1), we get

radius = 2 * 7/2 = 7

height = 3 * 7/2 = 21/2.

T.S.A of the cylinder = 2pir(h+r)

                                   = 2 * 22/7 * 7 * (21/2 + 7)

                                  = 22 * 35

                                  = 770 cm^2.
Answered by komal209
183
let radius be 2x and height be3x
volume =1617
 \pi {r}^{2} h  = 1617 \\  \frac{22}{7}  \times 2 {x}^{2}  \times 3x = 1617 \\  \frac{22}{7}  \times 4 {x}^{2}  \times 3x = 1617 \\  \frac{22}{7}  \times 12 {x}^{3}  = 1617 \\ 12 {x}^{3}  = \frac{1617 \times 7}{22 }  \\ 12 {x}^{3}  = 514.5 \\  {x}^{3}  =  \frac{514.5}{12}  \\  {x}^{3}  = 42.875 \\ x = 3.5 \\
r=3.5×2=7cm
h=3.5×3=10.5cm
Now,
TSA of cylinder = 2πr(r+h)
=
2  \times  \frac{22}{7}  \times 7(7 + 10.5) \\  = 44 \times 17.5 \\  = 770 {m}^{2}

Similar questions