Math, asked by nishiparasshar, 1 year ago

the radius of the base and the height of a cylinder are in the ratio 2:3. If the volume of the cylinder is 1617 cm^ (cube) .Find the CSA

Answers

Answered by abdul143
1
 <b>
 \red {\boxed{\huge \bf{SOLUTION}}}
R= 2x , h=3x and the volume is given 1617 cm³
>> the volume of cylinder is =>
 \huge \frak{\pi \times {r}^{2} \times \: h } \\ \\ \huge{ >> \pi = \frac{22}{7}} \\ > > \frak{ \frac{22}{7} \times {2x}^{2} \times 3x = 1617 } \\ > > \frak{ \frac{22}{7} \times {6x}^{3} = 1617 } \\ > > \frak{ {6x}^{3} = \frac{1617 \times 7}{22} = 514.5 } \\ > > \frak{ {x}^{3} = \frac{514.5}{6} =85.75 } \\ > > \frak{x = \sqrt{85.75} = 4.4 \: approx}
r=2x=2(4.4)=8.8,h=3x=3(4.4)=13.2
we have to find the CSA of cylinder>>
 \huge CSA \: of \: cylinder > > \\ \huge \frak{2 \times \pi \times \: r \times h} = > >
2×22/7×8.8×13.2=730.14
 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \underline{\underline\color{green} \huge \: answer}
Similar questions