Math, asked by Anonymous, 8 months ago

The radius of the circular ends of a bucket of height 15 cm are 14 cm and r сm (r < 14 cm). If the volume of bucket is 5390 cm3, then find the value of r. [Use π =  \frac{22}{7} ] ​

Answers

Answered by ItzBrainlyPrince
14

GiveN :-

  • The radii of Circular ends of a Bucket of height 15 cm are 14 cm and r cm

  • Volume of the Bucket = 5390 cm3

To FinD :-

  • The Value of ' r '

SoluTioN :-

We are Given with two radius of a circular ends of a Bucket of

  • Height = 15 cm and 14 cm

  • Volume = 5390cm3

Volume of Bucket

 \boxed{ \bold{ \pink{ \frac{1}{3}\pi \: r( {R}^{2} +  {r}^{2}    + Rr)}{} }{} }{}

5390 =  \frac{1}{3}  \times  \frac{22}{7}  \times 15(196 +  {r}^{2}  + 14r) \\  \\  \frac{5390 \times 7}{100}  = 196 +  {r}^{2}  + 14 \\  \\ 49 \times 7 = 196 +  {r}^{2}  + 14r \\  \\ 343 = 196 +  {r}^{2}  + 14r \\  \\  {r}^{2}  + 14r  - 147 = 0 \\  \\  {r}^{2}  + 21r - 7(r + 21) = 0 \\  \\ r(r  - 7) - 7(r + 21) = 0 \\  \\ ( r- 7)(r + 21) \\  \\ r = 7 \: or \:  - 21

  • R can never be Negative

Hence,

 \boxed{ \bold{ \red{★Hence \: r = 7}{} }{} }{}

Answered by Anonymous
8

Answer:

volume of the bucket=1/3πh(R²+r²+Rr)

=5390=1/3*22/7*15(196+r²+14r)

=5390=22/7*5(196+r²+14r)

=5390*7/110=196+r²+14r

=49*7=196+r²+14r

=343=196+r²+14r

=0=196-343+r²+14r

=0=r²+14r-147

=r²+21r-7r-147=0

=r(r+21)-7(r+21)=0

=(r-7)(r+21)=0

r=7 or -21(rejected)

hence r=7

Step-by-step explanation:

UNNIE IS IT THE ANSWER?

Similar questions