Math, asked by Lilsweety, 6 months ago

The radius of the cylinder whose TSA is 2508cm² is 7cm. Find the Volume and Curved surface area of the cylinder. ​

Answers

Answered by MaIeficent
32

Step-by-step explanation:

Given:-

  • Radius of the cylinder = 7cm.

  • Total surface area (TSA) of the cylinder = 2508cm².

To Find:-

  • The volume of the cylinder.

  • The Curved surface area (CSA) of the cylinder.

Solution:-

\sf TSA \: of \: the \: cylinder = 2 \pi r( h + r)

\sf \implies  2 \pi r( h + r) = 2508

\sf \implies  2  \times  \dfrac{22}{7} \times  7 \times ( h + 7) = 2508

\sf \implies  2  \times  22 ( h + 7) = 2508

\sf \implies  44 ( h + 7) = 2508

\sf \implies( h + 7) = \dfrac{2508}{44}

\sf \implies h + 7 = 57

\sf \implies h = 50

\sf \therefore \underline{\:\:\underline{\: Height \: of \: the \: cylinder \: (h) = 50cm\:}\:\:}

\sf Volume \: of \: the \: cylinder = \pi r^2 h

\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \dfrac{22}{7} \times 7 \times 7 \times 50

\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 22\times 7 \times 50

\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =7700cm^3

\underline{\boxed{\sf \therefore Volume \: of \: the \: cylinder = 7700cm^3}}

\sf CSA \: of \: the \: cylinder = 2\pi rh

\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = 2 \times \dfrac{22}{7} \times 7 \times 50

\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = 2 \times 22 \times 50

\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = 2200cm^2

\underline{\boxed{\sf \therefore CSA \: of \: the \: cylinder = 2200cm^2}}


amansharma264: nice
Answered by Anonymous
33

\huge\bold{\mathbb{QUESTION}}

The radius of the cylinder whose TSA is 2508\:cm^2 is 7\:cm. Find the Volume and Curved surface area of the cylinder.

\huge\bold{\mathbb{GIVEN}}

  • TSA of the cylinder =2508\:cm^2

  • Radius =7\:cm.

\huge\bold{\mathbb{TO\: FIND}}

  • Volume of the cylinder.

  • CSA of the cylinder.

\huge\bold{\mathbb{SOLUTION}}

Let the height be h\:cm.

We know that:

  • \boxed{\large\sf{TSA_{(Cylinder)} = 2 \pi r(h+r)\:unit^2}}

Let's find out the height.

Putting the formula.

2 \pi r(h+r)=2508

\implies 2\times {\dfrac{22}{7}}\times 7(h+7)=2508

\implies 2\times {\dfrac{22}{\cancel 7}}\times \cancel 7(h+7)=2508

\implies 2\times 22(h+7) = 2508

\implies 44(h+7) = 2508

\implies h+7 = {\dfrac{2508}{44}}

\implies h+7 = \cancel{\dfrac{2508}{44}}

\implies h+7 = 57

\implies h = 57-7

\implies {\boxed{\red{h = 50}}}

So, height = h\:cm = 50\:cm

\:

We know that:

  • \boxed{\large\sf{Volume_{(Cylinder)} = \pi r^2h\:unit^3}}

Let's find out the volume.

Putting the formula.

\{\pi \times(7)^2\times 50\}\:cm^3

\implies ({\dfrac{22}{7}}\times7\times7\times 50)\:cm^3

\implies ({\dfrac{22}{\cancel7}}\times\cancel7\times7\times 50)\:cm^3

\implies (22\times7\times 50)\:cm^3

\implies {\boxed{\red{7700\:cm^3}}}

So, volume = 7700\:cm^3

\:

We know that:

  • \boxed{\large\sf{CSA_{(Cylinder)} = 2\pi rh\:unit^2}}

Let's find out the CSA.

Putting the formula.

(2\times \pi \times7\times50)\:cm^2

\implies (2\times {\dfrac{22}{7}}\times7\times50)\:cm^2

\implies (2\times {\dfrac{22}{\cancel7}}\times \cancel 7\times50)\:cm^2

\implies (2\times 22\times50)\:cm^2

\implies {\boxed{\red{2200\:cm^2}}}

So, CSA = 2200\:cm^2

\huge\bold{\mathbb{THEREFORE}}

  • The volume of the cylinder is 7700\:cm^3.

  • The curve surface area of the cylinder is 2200\:cm^2.

\huge\bold{\mathbb{WE\:\, MADE\:\,IT\:\,!!}}

Similar questions