Physics, asked by Anonymous, 2 months ago

The radius vector of a point depends on time t, as :
\bullet \:  \sf r = ct +  \dfrac{b {t}^{2} }{2}
Where c and b are constant vectors. Find the modulus of Velocity and a Acceleration at any time t.​

Answers

Answered by Anonymous
1

Answer:

It is the correct answer.

Explanation:

Hope this attachment helps you.

Attachments:
Answered by Anonymous
5

\large{ \bf{ \green { \mathfrak{ \dag{ \underline{ \underline{ \sf \: Given}}}}}}}

  • \sf r = ct + \dfrac{b {t}^{2} }{2}

  \sf \: V =  \frac{dr}{dt}  = >  C + 2bt \\  \sf \: acceleration =  \frac{dv}{dt}  =  > 0 + 2b \\  :  \implies \boxed{  |a|  = 2b}

 \sf \: V = C + tb  \sf \red{(given)}

 \sf \:  =  \sqrt{C {}^{2}  + (2tb) {}^{2} + 2 \times  C   \times 2bt \times  \cos \theta }

 \boxed{\boxed{\sf\overrightarrow{\boldsymbol{C}}.\sf\overrightarrow{\boldsymbol{C}} = C {}^{2} } \:  \boxed{\sf\overrightarrow{\boldsymbol{b}}.\sf\overrightarrow{\boldsymbol{b }} = b {}^{2} }  \:  \boxed{\sf\overrightarrow{\boldsymbol{C}}.2\sf\overrightarrow{\boldsymbol{tb}} = 2t \times cb \cos \theta}} \:

We can write it like this ;

 \rightarrow \:  \sf\sqrt{C.C + 4t {}^{2}  \: b.b + 2 \times \:  2t\sf\overrightarrow{\boldsymbol{C}}.\sf\overrightarrow{\boldsymbol{b}}} \sf \\   \implies \boxed{ \boxed{  \sf\green{ \sqrt{  {\sf \: C.C + 4t {}^{2} b.b + 4t\sf\overrightarrow{\boldsymbol{C}}.\sf\overrightarrow{\boldsymbol{b}} }}}}}

_____________________

\sf\blue{hope \: this \: helps \: you!! \: }

Similar questions