The range of 'a'so that a².2 + 2xy + 4y2 = 0 represents distinct lines
Answers
Step-by-step explanation:
If the equation 2 2 S ax hxy by gx fy c ≡ + + + + += 2 22 0 represents a pair of straight lines
then
i)
222 ∆≡ + − − − = abc fgh af bg ch 2 0 and (ii) 22 2 h ab g ac f bc ≥≥≥ , ,
Proof:
Let the equation S = 0 represent the two lines 1 11 lx my n + += 0 and 2 22 lx my n + += 0 .
Then
2 2
1 1 12 2 2
2 22
( )( ) 0
ax hxy by gx fy c
lx my n l x m y n
+ ++++
≡+ + + +=
Equating the co-efficients of like terms, we get
1 2 ll a = , 12 21 lm lm h + = 2 , m1m2 = b, and 12 21 l n ln + = 2g , 12 21 m n mn + = 2 f , 1 2 n n = c
(i) Consider the product(2 )(2 )(2 ) hg f
1 2 2 1 12 21 12 21 =+ + + ( )( )( ) l m l m ln l n mn m n
( ) ( )( ) 22 22 22 22 2 2 2 2
12 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 12 1 2 1 2 = + + ++ + + l l m n m n mm l n l n nn l m l m ll mm nn 2
2 2
12 1 2 2 1 1 2 1 2 1 2 1 2 2 1 12 1 2
2
1 2 1 2 2 1 12 1 2 12 1 2 1 2
[( ) 2 ] [( ) 2 ]
[( ) 2 ] 2
l l mn m n mm nn mm ln l n ll nn
nn lm l m ll mm ll mm nn
= + − + +−
+ +− +
2 22 = −+ −+ − a f bc b g ac c h ab (4 2 ) (4 2 ) (4 2 )
2 22 8 4[ ] fgh af bg ch ab = ++− c
2 22 ∴+ −− −= abc fgh af bg ch 2 0
ii)
2
2 12 21
12 1 2 2
lm l m h ab l l m m + −= −
2
1 2 2 1 12 1 2 ( )4
4
l m l m ll mm + −− =
2
12 21 ( ) 0
4
lm l m − = ≥
Similarly we can prove 2
g ≥ ac and 2 f b ≥ c
NOTE :
If 2 22 ∆= + − − − = abc fgh af bg ch 2 0 , 2 h ab ≥ , 2 g ac ≥ and 2 f bc ≥ , then the
equation 2 2 S ax hxy by gx fy c ≡ + + + + += 2 22 0 represents a pair of straight lines