Math, asked by guptaananya2005, 11 days ago

The range of f(x), where

f(x) =  {i}^{x}  +  {i}^{ - x}  \: where \: x \: is \: natural \: number

EVALUATE The Above

❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ

❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ

❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ and best Users

Answers

Answered by mathdude500
30

\large\underline{\sf{Solution-}}

Given complex function is

\rm :\longmapsto\:f(x) =  {i}^{x} +  {i}^{ - x}

can be rewritten as

\rm :\longmapsto\:f(x) =  {i}^{x} +  \dfrac{1}{ {i}^{x} }

\rm :\longmapsto\:f(x) = \dfrac{ {i}^{2x}  + 1}{ {i}^{x} }

\rm :\longmapsto\:f(x) = \dfrac{ {( {i}^{2} )}^{x}  + 1}{ {i}^{x} }

We know,

\red{\rm :\longmapsto\:\boxed{ \tt{ \:  {i}^{2} \:  =  \:  -  \: 1 \:  \: }}}

So, using this, we get

\rm :\longmapsto\:f(x) = \dfrac{ {( - 1)}^{x}  + 1}{ {i}^{x} }

Now, it is given that x is a natural number. So, let assign some values to x.

➢ Pair of points of the above equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 1 & \sf 0 \\ \\ \sf 2 & \sf  - 2 \\ \\ \sf 3 & \sf 0\\ \\ \sf 4 & \sf 2\\ \\ \sf 5 & \sf 0\\ \\ \sf 6 & \sf  - 2\\ \\ \sf 7 & \sf 0\\ \\ \sf 8 & \sf 2 \end{array}} \\ \end{gathered}

So, from this we concluded that

\rm \implies\:\boxed{ \tt{ \: Range \: of \: f(x) =  \{ - 2,0,2 \}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Explore more :-

Argument of a complex number

 \red{\begin{gathered}\boxed{\begin{array}{c|c} \bf Complex \: number & \bf arg(z) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf x + iy & \sf  {tan}^{ - 1}\bigg |\dfrac{y}{x} \bigg|   \\ \\ \sf  - x + iy & \sf \pi - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf  - x - iy & \sf  - \pi + {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf x - iy & \sf  - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \end{array}} \\ \end{gathered}}

Similar questions