Math, asked by vamsikarthik102, 10 days ago

the range of the function f(x)=x3-8/x-2

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\tt{f(x)=\dfrac{x^3-8}{x-2}}

Now,

\sf{Now,\,\,let\,\,f(x)=y=\dfrac{x^3-8}{x-2}}

\sf{\implies\,y(x-2)=(x-2)(x^2-2x+4)}

\sf{\implies\,y(x-2)-(x-2)(x^2-2x+4)=0}

\sf{\implies\,(x-2)\{y-(x^2-2x+4)\}=0}

\sf{\implies\,(x-2)\{y-x^2+2x-4\}=0}

\sf{\implies\,x^2-2x+4-y=0}

\bf{Now,\,\,its \,\,discriminant\,\,will\,\,positive}

\tt{(-2)^2-4(4-y)(1)>0}

\tt{\implies4-4(4-y)>0}

\tt{\implies4\{1-(4-y)\}>0}

\tt{\implies1-(4-y)>0}

\tt{\implies1-4+y>0}

\tt{\implies\,y-3>0}

\tt{\implies\,y>3}

Hence, range of the given function \sf{\in(3,\infty)}

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) = \dfrac{ {x}^{3}  - 8}{x - 2}

To find the range of the function, Let assume that

\rm :\longmapsto\:y = \dfrac{ {x}^{3}  - 8}{x - 2}

\rm :\longmapsto\:y = \dfrac{ {x}^{3}  -  {2}^{3} }{x - 2}

We know,

\red{\rm :\longmapsto\: {x}^{3} -  {y}^{3}  = (x - y)( {x}^{2} + xy +  {y}^{2}) \: }

So, using this, we get

\rm :\longmapsto\:y = \dfrac{ (x - 2)( {x}^{2}  + 2x +  {2}^{2} )}{x - 2}

\rm \implies\:y =  {x}^{2} + 2x + 4

\rm \implies\:{x}^{2} + 2x + 4 - y = 0

For roots to be real, Discriminant must be greater than or equals to 0.

\rm \implies\: {2}^{2} - 4 \times 1 \times (4 - y) \geqslant 0

\rm \implies\: 4 - 4 (4 - y) \geqslant 0

\rm \implies\: 4 [1 - (4 - y)] \geqslant 0

\rm \implies\: 1 - 4 + y\geqslant 0

\rm \implies\:  - 3 + y\geqslant 0

\rm \implies\:  y\geqslant 3

\bf\implies \:y \:  \in \: [3, \:  \infty )

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Basic Concept Used :-

To find the range of function f(x)

Write down y=f(x).

Solve the equation for x to represent in terms of y

Represent in the form x = g(y).

Find the domain of g(y), and this will be the range of f(x).

Similar questions