Math, asked by sombirverma537, 8 months ago

the rate of change of the area of a cricle with respect to its radius r at r=5 is​

Answers

Answered by Asterinn
6

Given :

  • radius of circle = 5 unit

To find :

  • Rate of change of area ( dA/dr) of the circle with respect to radius.

Formula used :

  • A = πr²

where :

  • A = area if circle
  • r = radius of circle
  • π = 22/7

Solution :

Now , radius of circle = 5 unit.

\implies \: A = \pi {r}^{2}

Now differentiating both sides :-

\implies \:  \dfrac{d(A)}{dr}  =   \dfrac{d(\pi{r}^{2} )}{dx}

\implies \:  \dfrac{d(A)}{dr}  =  \pi \:  \dfrac{d({r}^{2} )}{dx}

\implies \:  \dfrac{d(A)}{dr}  =  \pi \:  2r \: \dfrac{d({r})}{dr}

Now put r = 5 and cancel out (dr) from numerator and denominator :-

\implies \:  \dfrac{d(A)}{dr}  =  \pi \times  \:  2 \times 5

\implies \:  \dfrac{d(A)}{dr}  =  \pi \times  \:  10

\implies \:  \dfrac{d(A)}{dr}  =  10  \pi

Put π = 22/7

\implies \:  \dfrac{d(A)}{dr}  =   \dfrac{22}{7}  \times  \:  10

\implies \:  \dfrac{d(A)}{dr}  =   \dfrac{220}{7}

Answer :

\dfrac{d(A)}{dr}  =   \dfrac{220}{7}   \: or \: 10 \pi

_______________________

\large\bf\blue{Additional-Information}

Area of circle = πr²

Circumference of circle = 2πr

Area of square = (side)²

perimeter of square = 4× side

area of Rhombus = 1/2(diagonal 1)(diagonal 2)

Area of rectangle = length × breadth

Perimeter of rectangle = 2( length + breadth)

____________________

d(x^n)/dx = n x^(n-1)

d(e^x)/dx = e^x

d(logx)/dx = 1/x

d(sinx)/dx = cosx

d(cos x)/dx = -sin x

d(cosec x)/dx = -cot x cosec x

d(tan x)/dx = sec²x

d(sec x)/dx = secx tanx

d(cot x)/dx = - cosec² x

_______________________

Similar questions