Physics, asked by Chauhakhushi379, 8 months ago

The rate of flow of a liquid

Attachments:

Answers

Answered by CunningKing
4

Answer:

[\sf{ML^{-1}T^{-1}}]

Explanation:

Given :-

\displaystyle{\sf{V=\frac{\pi Pr^4}{8\eta L} }}

Then,

\displaystyle{\sf{\eta=\frac{\pi Pr^4}{8VL} }}

To find :-

The dimensions of the coefficient of viscosity η of the liquid.

Solution :-

  • Volume rate(V) = \displaystyle{\sf{L^3T^{-1}}}
  • Pressure(P) = \displaystyle{\sf{ML^{-1}T^{-2}}}
  • Viscosity = η
  • Length = [L]

Now, the dimensional formula of viscosity is :-

\sf{\displaystyle{\frac{[ML^{-1}T^{-2}][L^4]}{[L^3T^{-1}][L]} }}

On cancelling the terms, we get :-

[\sf{ML^{-1}T^{-1}}]

Similar questions