Math, asked by IIStylishKingII, 19 days ago

The ratio between HCF and LCM of 15, 20 and 5 is
(a) 1:9
(b) 1:11
(c) 1:12
(d) 3:4

Explain your answer.
No Spam ​

Answers

Answered by Anonymous
45

Answer:

Option (c) 1:12 is the correct answer.

Step-by-step explanation:

The prime factors of 15, 20 and 5 are:-

15 = 3×5

20 = 2²×5

and 5 = 5

So, HCF of ( 15, 20, 5 ) = 5

LCM of ( 15, 20, 5 ) = 2² × 3 × 5 = 60

Therefore,

Required ratio = HCF / LCM

= 5/60

= 1/12 or 1:12

hope it helps you.

Answered by mathdude500
51

\large\underline{\sf{Solution-}}

Given numbers are 15, 20 and 5

Let's first evaluate the prime factors of 15, 20 and 5

Consider,

\rm \: Prime\:factorization\:of\:15 \\

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{3}}}&{\underline{\sf{\:\:15 \:\:}}}\\ {\underline{\sf{5}}}& \underline{\sf{\:\:5 \:\:}} \\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}

\rm \: Prime\:factorization\:of\:15 = 3 \times 5 \\

Now, Consider

\rm \: Prime\:factorization\:of\:20 \\

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:20 \:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:10 \:\:}}  \\ {\underline{\sf{5}}}& \underline{\sf{\:\:5\:\:}}\\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}

\rm \: Prime\:factorization\:of\:20 = 2 \times 2 \times 5 \\

Also,

\rm \: Prime\:factorization\:of\:5 =  5 \\

So, we have

\rm \: Prime\:factorization\:of\:5 =  5 \\

\rm \: Prime\:factorization\:of\:15 =  3 \times 5 \\

\rm \: Prime\:factorization\:of\:20 =  2 \times 2 \times 5 \\

So,

\rm\implies \:HCF(5,15,20) = 5 \\

\rm\implies \:LCM(5,15,20) = 2 \times 2 \times 3 \times 5 = 60 \\

Hence,

\rm \: HCF : LCM

\rm \:  =  \: 5 : 60

\rm \:  =  \: 1 : 12 \\

So, option (c) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

If a and b are two natural numbers, then

  • HCF (a, b) × LCM (a, b) = a × b

  • LCM is always divisible by a, b and HCF

  • HCF always divides a, b and LCM

If a and b are two co prime natural numbers, then

  • HCF (a, b) = 1

  • LCM (a, b) = ab

Smallest prime number is 2

Smallest Composite number is 4

Smallest odd composite number is 9

Similar questions