Math, asked by Anonymous, 2 months ago

The ratio between length and breadth of a field is 10 : 6. The area of the field is 3840m². Find the difference between the length and width of the field.​

Answers

Answered by kailashmannem
70

 \huge{\bf{\green{\mathfrak{\dag{\underline{\underline{Question:-}}}}}}}

 \bullet{\longmapsto} The ratio between length and breadth of a field is 10 : 6. The area of the field is 3840m². Find the difference between the length and width of the field.

 \huge {\bf{\orange{\mathfrak{\dag{\underline{\underline{Answer:-}}}}}}}

 \bullet{\leadsto} \: \textsf{The ratio between length and breadth of a field is 10:6.}

 \bullet{\leadsto} \: \sf Area \: of \: the \: field \: = \: 3840m^{2}.

 \bullet{\leadsto} \: \textsf{Let the length and breadth of the field be x.}

 \bullet{\leadsto} \: \pink{\tt Then, \: Length \: = \: 10x.}

 \bullet{\leadsto} \: \pink{\tt Then, \: Breadth \: = \: 6x.}

 \bullet{\leadsto} \: \pink{\tt Area \: = \: 3840m^{2}.}

 \bullet{\leadsto} \: \therefore{\sf l \: * \: b \: = \: 3840m^{2}.}

 \bullet{\leadsto} \: \textsf{Substituting the values,}

 \bullet{\leadsto} \: \sf 10x \: * \: 6x \: = \: 3840

 \bullet{\leadsto} \: \sf 60x^{2} \: = \: 3840

 \bullet{\leadsto} \: \sf x^{2} \: = \: \dfrac{384\cancel{0}}{6\cancel{0}}

 \bullet{\leadsto} \: \sf x^{2} \: = \: \dfrac{\cancel{384}}{\cancel{6}}

 \bullet{\leadsto} \: \sf x^{2} \: = \: 64

 \bullet{\leadsto} \: \sf x \: = \: \sqrt{64}

 \bullet{\leadsto} \: \underline{\boxed{\purple{\tt x \: = \: 8.}}}

 \bullet{\leadsto} \: \textsf{Now finding length and breadth,}

 \bullet{\leadsto} \: \sf Length \: = \: 10x \: = \: 10 \: * \: 8 \: = \: 80m.

 \bullet{\leadsto} \: \sf Breadth \: = \: 6x \: = \: 6 \: * \: 8 \: = \: 48m.

 \bullet{\leadsto} \: \pink{\texttt{Difference between length and breadth =}}

 \bullet{\leadsto} \: \sf l \: - \: b

 \bullet{\leadsto} \: \sf 80 \: - \: 48

 \bullet{\leadsto} \: \underline{\boxed{\purple{\tt Difference \: = \: 32 \: m.}}}

 \huge{\bf{\red{\mathfrak{\dag{\underline{\underline{Conclusion:-}}}}}}}

 \bullet{\longmapsto} \: \boxed{\therefore{\sf Difference \: between \: length \: and \: breadth \: of \: the \: field \: = \: 32 \: m.}}

 \huge{\bf{\blue{\mathfrak{\dag{\underline{\underline{Formulas \: Used:-}}}}}}}

 \bullet{\leadsto} \: \underline{\sf Area \: of \: Rectangle \: = \: l \: * \: b.}

 \bullet{\leadsto} \: \sf where,

 \bullet{\leadsto} \: \sf l \: is \: Length

 \bullet{\leadsto} \: \sf b \: is \: Breadth

Attachments:
Answered by Anonymous
105

Given : The ratio between length and breadth of a field is

10 : 6. The area of the field is 3840m²

To Be Found: the difference between the length and width of the field.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❒ Let the Length of the Rectangle be 10x and the breadth of the rectangle be 6x

 { \underline{ \cal{ \bold{ \bigstar \: According \: to \: the \: question : }}}}

  • The length and the breadth are in the ratio 10 : 6 and the area of the field is 3840m² respectively!

{ \underline{ \frak{As \:  we \:  know \:  that  : }}}

 \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \dag{ \bf{ \bigg(Area \: of \: a \: rectangle = l \times b \bigg)}}}

Where,

  • L stands for length
  • B stands for breadth

 \\

{ \bf{ \underline{ \circ \: subtitutuing \: the \: values : }}}

{ : \implies} \sf \: area_{(rectangle)} = length  \times breadth  \\  \\  \\ { : \implies} \sf3840 {m}^{2}  = 10x \times 6x  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\ { : \implies} \sf3840 {m}^{2}  = 60 {x}^{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\ { : \implies} \sf \:  {x}^{2}  =   \cancel\frac{3840}{60} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \sf \:  {x}^{2}  = 64\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: \\  \\  \\ { : \implies} \sf \: x =  \sqrt{64}  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \sf \:  { \purple{ \boxed{ \frak{x = 8m}} \star}}\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\

Now,

  • let's find the length and breadth of the rectangle respectively

 \\

Here,

  • Length = 10x = 80m
  • Breath = 6x = 48m

 \\

 \:  \:  \: { \underline{ \rm{ \therefore \: the \: length \: and \: breadth \: of \: the \: field \: are \: 80m \: and \: 48m}}}

 \\

Now,

  • Let's find the difference between the length and breadth of the rectangle!

 \dashrightarrow \sf \: difference = lenght - breadth \\  \\  \\ \dashrightarrow \sf \: difference  = 80m - 48m\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \dashrightarrow \sf \: difference  = { \pink{ \boxed{ \frak{32m}}}}\bigstar \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:

 \\

{ \boxed{ \boxed{ \rm{ \therefore \: the \: difference \: between \: the \: lenght \: and \: breadth =  \red{32m}}}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

 \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  { \bf{ \overline{ \mid{ \underline{more \: to \: know \mid}}}}}

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Similar questions