Math, asked by llYourSisterll, 3 months ago

The ratio between length and breadth of a field is 10 : 6. The area of the field is 3840m². Find the difference between the length and width of the field.​

Answers

Answered by Anonymous
2

Given : The ratio between length and breadth of a field is

10 : 6. The area of the field is 3840m²

To Be Found: the difference between the length and width of the field.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❒ Let the Length of the Rectangle be 10x and the breadth of the rectangle be 6x

 { \underline{ \cal{ \bold{ \bigstar \: According \: to \: the \: question : }}}}

The length and the breadth are in the ratio 10 : 6 and the area of the field is 3840m² respectively!

{ \underline{ \frak{As \:  we \:  know \:  that  : }}}

 \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \dag{ \bf{ \bigg(Area \: of \: a \: rectangle = l \times b \bigg)}}}

★Where,

L stands for length

B stands for breadth

 \\

{ \bf{ \underline{ \circ \: subtitutuing \: the \: values : }}}

{ : \implies} \sf \: area_{(rectangle)} = length  \times breadth  \\  \\  \\ { : \implies} \sf3840 {m}^{2}  = 10x \times 6x  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\ { : \implies} \sf3840 {m}^{2}  = 60 {x}^{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\ { : \implies} \sf \:  {x}^{2}  =   \cancel\frac{3840}{60} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \sf \:  {x}^{2}  = 64\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: \\  \\  \\ { : \implies} \sf \: x =  \sqrt{64}  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \sf \:  { \purple{ \boxed{ \frak{x = 8m}} \star}}\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\

Now,

let's find the length and breadth of the rectangle respectively

 \\

Here,

Length = 10x = 80m

Breath = 6x = 48m

 \\

 \:  \:  \: { \underline{ \rm{ \therefore \: the \: length \: and \: breadth \: of \: the \: field \: are \: 80m \: and \: 48m}}}

 \\

Now,

Let's find the difference between the length and breadth of the rectangle!

 \dashrightarrow \sf \: difference = lenght - breadth \\  \\  \\ \dashrightarrow \sf \: difference  = 80m - 48m\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \dashrightarrow \sf \: difference  = { \pink{ \boxed{ \frak{32m}}}}\bigstar \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:

 \\

{ \boxed{ \boxed{ \rm{ \therefore \: the \: difference \: between \: the \: lenght \: and \: breadth =  \red{32m}}}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

 \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  { \bf{ \overline{ \mid{ \underline{more \: to \: know \mid}}}}}

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Similar questions