Math, asked by Anonymous, 3 months ago

The ratio between length and breadth of a field is 10 : 6. The area of the field is 3840m². Find the difference between the length and width of the field

Answers

Answered by Anonymous
83

Corrected Question :

  • The ratio between length and breadth of a rectangular field is 10 : 6. The area of the rectangular field is 3840m². Find the difference between the length and width of the rectangular field.

\\

A N S W E R :

  • The difference between the length and width of the rectangular field 32 m.

\\

Given :

  • The ratio between length and breadth of a field is 10 : 6. The area of the rectangular field is 3840².

\\

To find :

  • Find the difference between the length and width of the rectangular field ?

\\

\large\star As we know that,

\large\dag Formula Used :

  • \boxed{\bf{Area\: of\: rectangle\:=\: Length\:×\: Breadth}}

\\

Solution :

  • Area = 3840 cm²

  • Length = 10x

  • Breadth = 6x

Value of Length and Breadth = {\sf{10x\:×\:6x\:=}}60x²

~~~~~

:\implies{\sf{60x^2\:=\:3840}}

~~~~~

~~~~~:\implies{\sf{x^2\:=\; \dfrac{3840}{60}}}

~~~~~

~~~~~~~~~~:\implies{\sf{x^2\:=\; \cancel{\dfrac{3840}{60}}}}

~~~~~

~~~~~~~~~~~~~~~:\implies{\sf{x^2\:=\:64^2}}

~~~~~

~~~~~~~~~~~~~~~~~~~~:\implies{\underline{\boxed{\frak{\pink{x\:=\:8}}}}}

~~~~~

  • Length = 10 × 8 = 80 m

  • Breadth = 6 × 8 = 48 m

  • Difference = 80 - 48 = 32 m

\\

Hence,

  • {\underline{\sf{The \:difference \:between \:the \:length \:and \:width\: of \:the\: \bf{rectangular}\: \sf{field}\; \bf{32\:m}.}}}

\\

~~~~\qquad\quad\therefore{\underline{\textsf{\textbf{Hence, Verified!}}}}

~~~~~~~~~~~~~~~ _____________________

Answered by Salmonpanna2022
19

Step-by-step explanation:

 \huge{\bf{\green{\mathfrak{\dag{\underline{\underline{Question:-}}}}}}}

 \bullet{\longmapsto} The ratio between length and breadth of a field is 10 : 6. The area of the field is 3840m². Find the difference between the length and width of the field.

 \huge {\bf{\orange{\mathfrak{\dag{\underline{\underline{Answer:-}}}}}}}

 \bullet{\leadsto} \: \textsf{The ratio between length and breadth of a field is 10:6.}

 \bullet{\leadsto} \: \sf Area \: of \: the \: field \: = \: 3840m^{2}.

 \bullet{\leadsto} \: \textsf{Let the length and breadth of the field be x.}

 \bullet{\leadsto} \: \pink{\tt Then, \: Length \: = \: 10x.}

 \bullet{\leadsto} \: \pink{\tt Then, \: Breadth \: = \: 6x.}

 \bullet{\leadsto} \: \pink{\tt Area \: = \: 3840m^{2}.}

 \bullet{\leadsto} \: \therefore{\sf l \: * \: b \: = \: 3840m^{2}.}

 \bullet{\leadsto} \: \textsf{Substituting the values,}

 \bullet{\leadsto} \: \sf 10x \: * \: 6x \: = \: 3840

 \bullet{\leadsto} \: \sf 60x^{2} \: = \: 3840

 \bullet{\leadsto} \: \sf x^{2} \: = \: \dfrac{384\cancel{0}}{6\cancel{0}}

 \bullet{\leadsto} \: \sf x^{2} \: = \: \dfrac{\cancel{384}}{\cancel{6}}

 \bullet{\leadsto} \: \sf x^{2} \: = \: 64

 \bullet{\leadsto} \: \sf x \: = \: \sqrt{64}

 \bullet{\leadsto} \: \underline{\boxed{\purple{\tt x \: = \: 8.}}}

 \bullet{\leadsto} \: \textsf{Now finding length and breadth,}

 \bullet{\leadsto} \: \sf Length \: = \: 10x \: = \: 10 \: * \: 8 \: = \: 80m.

 \bullet{\leadsto} \: \sf Breadth \: = \: 6x \: = \: 6 \: * \: 8 \: = \: 48m.

 \bullet{\leadsto} \: \pink{\texttt{Difference between length and breadth =}}

 \bullet{\leadsto} \: \sf l \: - \: b

 \bullet{\leadsto} \: \sf 80 \: - \: 48

 \bullet{\leadsto} \: \underline{\boxed{\purple{\tt Difference \: = \: 32 \: m.}}}

 \huge{\bf{\red{\mathfrak{\dag{\underline{\underline{Conclusion:-}}}}}}}

 \bullet{\longmapsto} \: \boxed{\therefore{\sf Difference \: between \: length \: and \: breadth \: of \: the \: field \: = \: 32 \: m.}}

 \huge{\bf{\blue{\mathfrak{\dag{\underline{\underline{Formulas \: Used:-}}}}}}}

 \bullet{\leadsto} \: \underline{\sf Area \: of \: Rectangle \: = \: l \: * \: b.}

 \bullet{\leadsto} \: \sf where,

 \bullet{\leadsto} \: \sf l \: is \: Length

 \bullet{\leadsto} \: \sf b \: is \: Breadth

:)

Similar questions