Math, asked by Anonymous, 3 months ago

The ratio between length and breadth of a field is 10 : 6. The area of the field is 3840m². Find the difference between the length and width of the field

Answers

Answered by Anonymous
21

 \huge{\bf{\green{\mathfrak{\dag{\underline{\underline{Question:-}}}}}}}

 \bullet{\longmapsto} The ratio between length and breadth of a field is 10 : 6. The area of the field is 3840m². Find the difference between the length and width of the field.

 \huge {\bf{\orange{\mathfrak{\dag{\underline{\underline{Answer:-}}}}}}}

 \bullet{\leadsto} \: \textsf{The ratio between length and breadth of a field is 10:6.}

 \bullet{\leadsto} \: \sf Area \: of \: the \: field \: = \: 3840m^{2}.

 \bullet{\leadsto} \: \textsf{Let the length and breadth of the field be x.}

 \bullet{\leadsto} \: \pink{\tt Then, \: Length \: = \: 10x.}

 \bullet{\leadsto} \: \pink{\tt Then, \: Breadth \: = \: 6x.}

 \bullet{\leadsto} \: \pink{\tt Area \: = \: 3840m^{2}.}

 \bullet{\leadsto} \: \therefore{\sf l \: * \: b \: = \: 3840m^{2}.}

 \bullet{\leadsto} \: \textsf{Substituting the values,}

 \bullet{\leadsto} \: \sf 10x \: * \: 6x \: = \: 3840

 \bullet{\leadsto} \: \sf 60x^{2} \: = \: 3840

 \bullet{\leadsto} \: \sf x^{2} \: = \: \dfrac{384\cancel{0}}{6\cancel{0}}

 \bullet{\leadsto} \: \sf x^{2} \: = \: \dfrac{\cancel{384}}{\cancel{6}}

 \bullet{\leadsto} \: \sf x^{2} \: = \: 64

 \bullet{\leadsto} \: \sf x \: = \: \sqrt{64}

 \bullet{\leadsto} \: \underline{\boxed{\purple{\tt x \: = \: 8.}}}

 \bullet{\leadsto} \: \textsf{Now finding length and breadth,}

 \bullet{\leadsto} \: \sf Length \: = \: 10x \: = \: 10 \: * \: 8 \: = \: 80m.

 \bullet{\leadsto} \: \sf Breadth \: = \: 6x \: = \: 6 \: * \: 8 \: = \: 48m.

 \bullet{\leadsto} \: \pink{\texttt{Difference between length and breadth =}}

 \bullet{\leadsto} \: \sf l \: - \: b

 \bullet{\leadsto} \: \sf 80 \: - \: 48

 \bullet{\leadsto} \: \underline{\boxed{\purple{\tt Difference \: = \: 32 \: m.}}}

 \huge{\bf{\red{\mathfrak{\dag{\underline{\underline{Conclusion:-}}}}}}}

 \bullet{\longmapsto} \: \boxed{\therefore{\sf Difference \: between \: length \: and \: breadth \: of \: the \: field \: = \: 32 \: m.}}

 \huge{\bf{\blue{\mathfrak{\dag{\underline{\underline{Formulas \: Used:-}}}}}}}

 \bullet{\leadsto} \: \underline{\sf Area \: of \: Rectangle \: = \: l \: * \: b.}

 \bullet{\leadsto} \: \sf where,

 \bullet{\leadsto} \: \sf l \: is \: Length

 \bullet{\leadsto} \: \sf b \: is \: Breadth

Answered by dalvirupali52
0

Given:

• Ratio of length and width is 10:6

Area of the field is 3840 m².

To Find :

• Difference between the length and width.

Solution:

Let Length of field be = 10x

Let Breadth of field be = 6x

Using Formula :

Area of Rectangle = 1 x w

Putting Values:

3840 = 10x x 6x

3840 = 60x2

64 = x

→→→→ x = 8 m

Value of x is 8 m..

Therefore:

Length of field = 10(8)

80 m

Width of field = 6(8)

→→→→ 48 m

Now

Difference between Length and Width :

80-48

32 m

Similar questions