English, asked by bhoomi79, 11 months ago

The ratio between the curved surface area and the total surface area of a right circular
cylinder is 1:2. Find the volume of the cylinder if its total surface area is 616 cm.​

Answers

Answered by Anonymous
31

Answer:

Volume of cylinder is 22,617.42cm³.

Explanation:

Given ratio of surface area :total surface area of cylinder =1:2.

As surface area of cylinder is 2׶×r×h.

And total surface area is ¶×r×(r + h).

=> \frac{2\pi rh}{\pi r(r + h)}    \frac{1}{2}

=>  \frac{2h}{(r + h)}  =  \frac{1}{2}

=>4h = (r + h)

=>3h = r

Given total surface area =616cm²

Therefore,

=>\pi \times r(r + h) = 616  \\=>\pi{r}^{2}  + \pi rh = 616 \\=>\pi {(3h)}^{2}  + \pi(3h)h = 616 \\ =>9 {h}^{2} \pi + 3  {h}^{2} \pi = 616 \\ =>12 {h}^{2} \pi = 616 \\=> \pi {h}^{2}  =  \frac{616}{12}

\pi \:  { (\frac{r}{3} )}^{2} =  \frac{616}{12}

\pi {r}^{2}  =  \frac{616 \times 9}{12}

\pi {r}^{2}  = 462

r =  \sqrt{147} cm

volume = \pi {r}^{3} h

volume = \pi \times 147  \sqrt{147} \times ( \frac{r}{3} )

volume = \pi \times 147 \sqrt{147}  \times  \frac{ \sqrt{147} }{3}  \\  \:  \:  \:   \:  \:  \:  \:   \:  \:  \:  \:  \:  \:   \:   \:   \:  =  \frac{\pi {147}^{2} }{3}  \\  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:    \:  \:  \:   \:  \:   \:  = 22617.42 \:  {cm}^{3}

Answered by xcristianox
4

We have curved surface area= 2π*r*h

we have the circular surface  area= 2πr²

ATQ        2πr(h+r)= 616      ---(1)

        and  2*2πrh= 2πrh+ 2πr²

                            ⇒      h=r

Substituting value of h in (1)

                 we have 4πr²=616

                              ⇒   r²=59

                              ⇒   r=7

Volume of the cylinder is

                             ⇒  πr².h= πr³

                           

                             ⇒ = πr³=1078cm³

Similar questions