Math, asked by kimaya2508, 11 months ago

The ratio between the curved surface Area and the total surface area of a cylinder is 1:2 find the volume of the cylinder given that the total surface area is 616 cm cube

Answers

Answered by sp208
1

Answer:

1078 cm cube

Step-by-step explanation:

curved surface area : total surface area => 1 : 2

=> total surface area = 616 cm^2

let

sum of CSA & TSA be x

so

TSA = x × 2/3 => 616 = 2x/3

=> 2x = 616 × 3

=> x = 616 × 3/2 = 924

so

CSA = 924 × 1/3 = 308 cm^2

now

CSA = 2πrh & TSA = 2πr(r+h)

=> CSA : TSA = 1 : 2

=> 2πrh : 2πr(r+h) = 1 : 2

=> 2(2πrh) = 1(2πr(r+h)

=> 2h = r+h

=> h = r

&

CSA = 2πrh

= 2 × 22/7 × {r}^2 = 308

=> {r}^2 = 308 × 7 / 44

=> {r}^2 = 49

=> r = √49 = 7

given

now

volume of cylinder = π(r)^2h

=> volume = π × r × r × h

=> volume = π × (r) ^3

=> volume = 22/7 × (7)^3

=> volume = 1078 cm cube

Answered by GaneshRM2006
0

Answer:

given csa:tsa =1:2

therefore tsa = 2×csa

tsa = 616 cm²

TSA = 2πr (h + r)

CSA = 2πrh

csa:tsa = 1:2

2πrh : 2πr(h+r) = 1:2

(2πrh)/(2πr(h+r) = 1/2

    (h) /(h+r)       = 1/2    [on cancelling 2πr on both num. and den.]

         2h        =  h+r

           2h-h     = r

              h      = r

so height and the radius are equal

tsa = 616cm²

2πr(h+r)=616cm²

2πr(r+r)  = 616   [as h=r]

2πr(2r)    =  616

4πr²       =  616

   πr²   = 616/4

       r² = 154/π

        r² = 49

        r  = 7

hence r=h=7cm

volume of cylinder = πr²h

                               = π7²×7 =  π7³

                               =  22/7  × 7³

                                = 22×7²

                                =1078cm³

Similar questions