Math, asked by Mbappe007, 1 month ago

The ratio in which (4,5) divides the join of (2,3) and (7,8) is ________

Answers

Answered by sweetybanerjee09
1

Please mark me as a brainliest

Attachments:
Answered by CopyThat
8

Answer:

  • 2 : 3 is the required ratio.

Step-by-step explanation:

Let the ratio be m_1 and m_2.

Using section formula:

[m_1x_2 + m_2x_1/m_1 + m_2],[m_1y_2 + m_2y_1/m_1 + m_2]

We have points:

› A(2,3) and B(7,8).

Substituting:

› [m_1(7) + m_2(2)]/m_1 + m_2,[m_1(8) + m_2(3)/m_1 + m_2]

⇒ 4 = [m_1(7) + m_2(2)]/m_1 + m_2

⇒ 4(m_1 + m_2) = 7m_1 + 2m_2

⇒ 4m_1 + 4m_2 = 7m_1 + 2m_2

⇒ 4m_1 - 7m_1 = 2m_2 - 4m_2

⇒ -3m_1 = -2m_2

⇒ 3m_1 = 2m_2

⇒ m_1/m_2 = 2/3

or,

⇒ 5 = [m_1(8) + m_2(3)/m_1 + m_2]

⇒ 5 = 8m_1 + 3m_2/m_1 + m_2

⇒ 5(m_1 + m_2) = 8m_1 + 3m_2

⇒ 5m_1 + 5m_2 = 8m_1 + 3m_2

⇒ 5m_1 - 8m_1 = 3m_2 - 5m_2

⇒ -3m_1 = -2m_2

⇒ 3m_1 = 2m_2

⇒ m_1/m_2 = 2/3

The required ratio is 2:3.

Similar questions