Math, asked by buntybeesa6244, 10 months ago

The ratio in which (-6,5) divide the join of (-3,-1) and (-8,9) is?

Answers

Answered by Anonymous
17

\large{\underline{\bf{\red{Given:-}}}}

  • ✦ (-6 ,5) divides the line segment joining (-3,-1) and (-8,9)

\large{\underline{\bf{\red{To\:Find:-}}}}

  • ratio in which (-6,5) divides the line segment.

\huge{\underline{\bf{\green{Solution:-}}}}

Let the ratio be k:1

Let coordinates of p are (-6,5)

By section formula :-

  \bf\purple{(x,y) = ( \frac{mx_2 + nx_1}{m + n}, \frac{my_2 + my_1}{m + n}  )}\\

Let m = k and n = 1

The coordinates of p are

 \mapsto  \rm\:p( \frac{k \times  - 8 + 1 \times  - 3}{k + 1}, \frac{k \times 9 + 1 \times  - 1}{k + 1}  )\: \\  \\ \mapsto  \rm\:p( \frac{ - 8k - 3}{k + 1}, \frac{9k - 1}{k + 1}) \\  \\   \rm\:it \: is \: given \: that \:  \: p( - 6,5) \\ so  \\  \\ \mapsto  \rm\small\frac{ - 8k - 3}{k + 1}  =  - 6 \:  \: and \:  \:  \frac{9k - 1}{k + 1} = 5  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{ \bf\:case \: 1st} \\  \\ \mapsto  \rm\: \frac{ - 8k - 3}{k + 1} =  - 6 \\  \\ \mapsto  \rm\: - 8k - 3 =  - 6(k + 1) \\  \\  \mapsto  \rm\: - 8k - 3 =  - 6k - 6 \\  \\ \mapsto  \rm\: - 3 + 6 =  - 6k + 8k \\  \\\mapsto  \rm\:3 = 2k \\  \\\mapsto  \bf \blue{\:k =  \frac{3}{2} } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace  {\bf\:2nd \: \:  case} \\  \\ \mapsto  \rm\: \frac{9k - 1}{k + 1}    = 5 \\  \\ \mapsto  \rm\:9k - 1 = 5(k + 1) \\  \\\mapsto  \rm\:9k - 1 = 5k + 5 \\  \\\mapsto  \rm\:9k - 5k = 5 + 1 \\  \\  \mapsto  \rm\:4k = 6 \\  \\\mapsto  \rm\:k =   \cancel\frac{6}{4}   \\  \\ \mapsto  \bf\blue{k =  \frac{3}{2}} \\\\

K = 3/2 in both cases.

So,

The required ratio is 3/2:1

which is 3:1.

Hence ,

(-6 ,5) divides the line segment joining (-3,-1) and (-8,9) in the ratio of 3:2.

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
11

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{The \ point \ divides \ the \ line \ in \ ratio}

\sf{of \ 3:2}

\sf\orange{Given:}

\sf{\implies{Point(-6,5) \ divides \ the \ line \ joining}}

\sf{points \ (-3,-1) \ and \ (-8,9)}

\sf\pink{To \ find:}

\sf{The \ ratio \ in \ which \ line \ is \ divided.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Let,}

\sf{x1=-3,y1=1,x2=-8,y2=9,x=-6,y=5}

\sf{By \ section \ formula}

\sf{x=\frac{mx2+nx1}{m+n} \ ;y=\frac{my2+ny1}{m+n}}

\sf{\implies{-6=\frac{m(-8)+n(-3)}{m+n}}}

\sf{\implies{-6(m+n)=-8m+3n}}

\sf{\implies{-6m-6n=-8m-3n}}

\sf{\implies{-6m+8m=-3n+6n}}

\sf{\implies{2m=3n}}

\sf{\implies{\frac{m}{n}=\frac{3}{2}}}

\sf\purple{\tt{\therefore{The \ point \ divides \ the \ line \ in \ ratio}}}

\sf\purple{\tt{of \ 3:2}}

Similar questions