Math, asked by ravulapati777, 7 months ago

the ratio in which the line
3 x + y = 9
divides the line sequent joining the points (1;3) and (2;7) is given by

Answers

Answered by SarcasticL0ve
7

⌬ Let the line 3x + y 9 = 0 divide the line segment joining the point (1,3) and (2,7) in the ratio K:1 at point C.

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀⠀⠀

Using section formula,

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\purple{ x\;,\;y = \bigg( \dfrac{m_2 x_1 + m_1 x_2 }{m_1 + m_2 }\;,\; \dfrac{m_2 y_1 + m_1 y_2 }{m_1 + m_2 } \bigg)}}}}\\ \\

:\implies\sf C = \bigg( \dfrac{1 \times 1 + k \times 2}{k + 1}\;,\; \dfrac{1 \times 3 + k \times 7}{k + 1} \bigg)\\ \\

:\implies\sf C = \bigg( \dfrac{1 + 2k}{k + 1}\;,\; \dfrac{3 + 7k}{k + 1} \bigg)\\ \\

\sf C = \bigg( \dfrac{1 + 2k}{k + 1}\;,\; \dfrac{3 + 7k}{k + 1} \bigg)\;lies\;on\;the\;line\;3x + y - 9 = 0\\ \\

Therefore,

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 3 \bigg(  \dfrac{1 + 2k}{k + 1} \bigg) + \bigg( \dfrac{3 + 7k}{k + 1} \bigg) - 9 = 0\\ \\

:\implies\sf \dfrac{ 3(1 + 2k) + (3 + 7k) - 9(k + 1)}{(k + 1)} = 0\\ \\

:\implies\sf 3(1 + 2k) + (3 + 7k) - 9(k + 1) = 0\\ \\

:\implies\sf 3 + 6k + 3 + 7k - 9k - 9 = 0\\ \\

:\implies\sf 4k - 3\\ \\

:\implies{\boxed{\sf{\pink{ k = \dfrac{3}{4}}}}}\;\bigstar\\ \\

∴ Thus, the line 3x + y − 9 = 0 divide the line segment in the ratio 3:4.

Similar questions