Math, asked by sharanbalaji2752007, 5 hours ago

The ratio in which the y-axis divides the line segment joining (– 4, 4) and (4, – 2) is
(a) 2: 2 (b) 1: 3 (c) 3: 1 (d) 2: 5

Answers

Answered by shrutisinghrajput142
1

Step-by-step explanation:

Using the section formula, if a point (x,y)divides the line joining the points (x1,y1)and (x2,y2) in the ratio m:n, then 

(x,y)=(m+nmx2+nx1,m+nmy2+ny1)

Let y−axis divides the line joining points A(−4,−6) and B(10,12) in ratio y:1 

Then, as per section formula the coordinates of point which divides the line is y+110y−4,y+112y−6

We know that coordinate at y−axis of point of x is zero 

Then, y+110y−4=0

⇒10y−4=0

⇒10y=4

⇒y=410=25

Then, ratio is 52:1⇒2:5

Substitute the value of y in y− coordinates, we get  1252−6=2−524−30=−3−6=2

Then, coordinates of point which divides the line joining A and B is (0,2) and ratio 52.

Similar questions