Math, asked by anishamohanty098, 6 months ago

The ratio of 3rd and 11th term of an A.P is 1:4. Find the ratio of its 5th term and 19th term

Answers

Answered by kaushik05
74

Given:

• Ratio of 3rd and 11th term of an AP is 1:4.

To find :

The ratio of its 5th term and 19th term .

Solution:

  \implies \:  \frac{a_3}{a_{11}}  =  \frac{1}{4}  \\  \\  \implies \:  \frac{a + 2d}{a + 10d}  =  \frac{1}{4}  \\  \\  \implies \: 4(a + 2d) = 1(a + 10d) \\  \\  \implies \: 4a + 8d = a + 10d \\  \\  \implies \: 3a = 2d \\  \\  \implies \: a = \frac{2}{3}d

Now ,the ratio of 5th and 19th term :

 \implies \:  \frac{a_5}{a_{19}}   \\  \\  \implies \:  \frac{a + 4d}{a + 18d}  \\  \\

Now put the value of a = 6d we get ,

 \implies \:  \frac{\frac{2}{3}d + 4d}{\frac{2}{3}d + 18d}  \\  \\  \implies \:  \frac{\frac{14}{3}\cancel{d}}{\frac{56}{3}\cancel{d}}  \\  \\  \implies \:\frac{1}{4}

Hence ,the ratio is 1:4.

Answered by DARLO20
151

GIVEN :-

  • Tʜᴇ ʀᴀᴛɪᴏ ᴏғ 3ʀᴅ ᴀɴᴅ 11ᴛʜ ᴛᴇʀᴍ ᴏғ ᴀɴ A.P ɪs 1:4 .

TO FIND :-

  • Tʜᴇ ʀᴀᴛɪᴏ ᴏғ ɪᴛs 5ᴛʜ ᴀɴᴅ 19ᴛʜ ᴛᴇʀᴍ .

SOLUTION :-

Wᴇ ʜᴀᴠᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

\orange\star\:\bf{\gray{\underline{\pink{\boxed{\purple{a_n\:=\:a\:+\:(n\:-\:1)\:d\:}}}}}}

Where,

  • a = first term

  • n = no. of term .

  • d = common difference .

According to the question,

\bf{\implies\:\dfrac{a_3}{a_{11}}\:=\:\dfrac{1}{4}\:}

\rm{\implies\:\dfrac{a\:+\:(3\:-\:1)\:d}{a\:+\:(11\:-\:1)\:d}\:=\:\dfrac{1}{4}\:}

\rm{\implies\:\dfrac{a\:+\:2d}{a\:+\:10d}\:=\:\dfrac{1}{4}\:}

\rm{\implies\:4\times{(a\:+\:2d)}\:=\:1\times{(a\:+\:10d)}\:}

\rm{\implies\:4a\:+\:8d\:=\:a\:+\:10d\:}

\rm{\implies\:4a\:-\:a\:=\:10d\:-\:8d\:}

\rm{\implies\:3a\:=\:2d\:}

\bf\green{\implies\:a\:=\:\dfrac{2}{3}d}

Now,

\bf{\implies\:\dfrac{a_5}{a_{19}}\:}

\rm{\implies\:\dfrac{a\:+\:(5\:-\:1)\:d}{a\:+\:(19\:-\:1)\:d}\:}

\rm{\implies\:\dfrac{a\:+\:4d}{a\:+\:18d}\:}

\rm{\implies\:\dfrac{\dfrac{2}{3}d\:+\:4d}{\dfrac{2}{3}d\:+\:18d}\:}

\rm{\implies\:\dfrac{14d/3}{56d/3}\:}

\rm{\implies\:\dfrac{14d}{3}\times{\dfrac{3}{56d}}\:}

\bf{\implies\:\dfrac{1}{4}\:}

\bf\pink{\implies\:\dfrac{a_5}{a_{19}}\:=\:1\::\:4\:}

Similar questions